




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省紹興市柯橋區(qū)柯橋區(qū)教師發(fā)展中心高二上數(shù)學期末學業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,若,則公比()A. B.2C.2或 D.42.若拋物線的準線方程是,則拋物線的標準方程是()A. B.C. D.3.“圓”是中國文化的一個重要精神元素,在中式建筑中有著廣泛的運用,最具代表性的便是園林中的門洞.如圖,某園林中的圓弧形挪動高為2.5m,底面寬為1m,則該門洞的半徑為()A.1.2m B.1.3mC.1.4m D.1.5m4.已知橢圓的短軸長為8,且一個焦點是圓的圓心,則該橢圓的左頂點為()A B.C. D.5.如圖,在長方體中,是線段上一點,且,若,則()A. B.C. D.6.已知雙曲線的左、右焦點分別為,點A在雙曲線上,且軸,若則雙曲線的離心率等于()A. B.C.2 D.37.東漢末年的數(shù)學家趙爽在《周髀算經》中利用一副“弦圖”,根據面積關系給出了勾股定理的證明,后人稱其為“趙爽弦圖”.如圖1,它由四個全等的直角三角形與一個小正方形拼成的一個大正方形.我們通過類比得到圖2,它是由三個全等的鈍角三角形與一個小等邊三角形拼成的一個大等邊三角形.對于圖2.下列結論正確的是()①這三個全等的鈍角三角形不可能是等腰三角形;②若,,則;③若,則;④若是的中點,則三角形的面積是三角形面積的7倍.A.①②④ B.①②③C.②③④ D.①③④8.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數(shù)據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg9.在等比數(shù)列中,若是函數(shù)的極值點,則的值是()A. B.C. D.10.根據如下樣本數(shù)據,得到回歸直線方程,則x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.11.數(shù)列,,,,,中,有序實數(shù)對是()A. B.C. D.12.已知直線與拋物線C:相交于A,B兩點,O為坐標原點,,的斜率分別為,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,長方體中,,,,,分別是,,的中點,則異面直線與所成角為__.14.已知向量、滿足,,且,則與的夾角為___________.15.過點,且垂直于的直線方程為_______________.16.一個質地均勻的正四面體,其四個面涂有不同的顏色,拋擲這個正四面體一次,觀察它與地面接觸的顏色得到樣本空間{紅,黃,藍,綠},設事件{紅,黃},事件{紅,藍},事件{黃,綠},則下列判斷:①E與F是互斥事件;②E與F是獨立事件;③F與G是對立事件;④F與G是獨立事件.其中正確判斷的序號是______(請寫出所有正確判斷的序號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為慶祝中國共產黨成立100周年,某校舉行了黨史知識競賽,在必答題環(huán)節(jié),甲、乙兩位選手分別從3道選擇題(1)甲至少抽到1道填空題(2)甲答對的題數(shù)比乙多的概率.18.(12分)的內角A,B,C的對邊分別為a,b,c.已知.(1)求角C;(2)若,,求的周長.19.(12分)已知函數(shù).(1)當時,解不等式;(2)若不等式的解集為,求實數(shù)的取值范圍.20.(12分)已知函數(shù)在處有極值.(1)求的值;(2)求函數(shù)在上的最大值與最小值.21.(12分)已知為各項均為正數(shù)的等比數(shù)列,且,(1)求數(shù)列的通項公式;(2)令,求數(shù)列前n項和22.(10分)如圖,在四棱錐中,底面ABCD為矩形,側面PAD是正三角形,平面平面ABCD,M是PD的中點(1)證明:平面PCD;(2)若PB與底面ABCD所成角的正切值為,求二面角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由兩式相除即可求公比.【詳解】設等比數(shù)列的公比為q,∵其各項均為正數(shù),故q>0,∵,∴,又∵,∴=4,則q=2.故選:B.2、D【解析】根據拋物線的準線方程,可直接得出拋物線的焦點,進而利用待定系數(shù)法求得拋物線的標準方程【詳解】準線方程為,則說明拋物線的焦點在軸的正半軸則其標準方程可設為:則準線方程為:解得:則拋物線的標準方程為:故選:D3、B【解析】設半徑為R,根據垂徑定理可以列方程求解即可.【詳解】設半徑為R,,解得,化簡得.故選:B.4、D【解析】根據橢圓的一個焦點是圓的圓心,求得c,再根據橢圓的短軸長為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個焦點是,即c=3,又橢圓的短軸長為8,即b=4,所以橢圓長半軸長為,所以橢圓的左頂點為,故選:D5、A【解析】將利用、、表示,再利用空間向量的加法可得出關于、、的表達式,進而可求得的值.【詳解】連接、,因,因為是線段上一點,且,則,因此,因此,.故選:A.6、B【解析】由雙曲線定義結合通徑公式、化簡得出,最后得出離心率.【詳解】,,,解得故選:B7、A【解析】對于①,由三角形大邊對大角的性質分析,對于②,根據題意利用正弦定理分析,對于③,利用余弦定理分析,對于④,利用三角形的面積公式分析判斷【詳解】對于①,根據題意,圖2,它是由三個全等的鈍角三角形與一個小等邊三角形拼成的一個大等邊三角形,故,,所以這三個全等的鈍角三角形不可能是等腰三角形,故①正確;對于②,由題知,在中,,,,所以,所以由正弦定理得解得,因為,所以,故②正確;對于③,不妨設,所以在中,由余弦定理得,代入數(shù)據得,所以,所以,故③錯誤;對于④,若是的中點,則,所以,故④正確.故選:A第II卷(非選擇題8、D【解析】根據y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤故選D9、B【解析】根據導數(shù)的性質求出函數(shù)的極值點,再根據等比數(shù)列的性質進行求解即可.【詳解】,當時,單調遞增,當時,單調遞減,當時,單調遞增,所以是函數(shù)的極值點,因為,且所以,故選:B10、B【解析】作出散點圖,由散點圖得出回歸直線中的的符號【詳解】作出散點圖如圖所示.由圖可知,回歸直線=x+的斜率<0,當x=0時,=>0.故選B【點睛】本題考查了散點圖的概念,擬合線性回歸直線第一步畫散點圖,再由數(shù)據計算的值11、A【解析】根據數(shù)列的概念,找到其中的規(guī)律即可求解.【詳解】由數(shù)列,,,,,可知,,,,,則,解得,故有序實數(shù)對是,故選:12、C【解析】設,,由消得:,又,由韋達定理代入計算即可得答案.【詳解】設,,由消得:,所以,故.故選:C【點睛】本題主要考查了直線與拋物線的位置關系,直線的斜率公式,考查了轉化與化歸的思想,考查了學生的運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出異面直線與所成角.【詳解】解:以為原點,為軸,為軸,為軸,建立空間直角坐標系,,0,,,0,,,2,,,1,,,,設異面直線與所成角為,,異面直線與所成角為.故答案為:.14、##【解析】根據向量數(shù)量積的計算公式即可計算.【詳解】,,.故答案為:﹒15、【解析】求出,可得垂直于的直線的斜率為,再利用點斜式可得結果.【詳解】因為,所以,所以垂直于的直線的斜率為,垂直于的直線方程為,化為,故答案為.【點睛】對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1);(2),這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.16、②③【解析】由對立和互斥事件的定義判斷①③;由獨立事件的性質判斷②④.【詳解】{紅},則E與F不是互斥事件;且,則F與G是對立事件;,則E與F是獨立事件;,,則F與G不是獨立事件故答案為:②③三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)把3道選擇題(2)設,分別表示甲答對1道題,2道題的事件,,分別表示乙答對0道題,1道題的事件,分別求出它們的概率,甲答對的題數(shù)比乙多這個事件是,然后由相互獨立的事件和互斥事件的概率公式計算【詳解】解:(1)記3道選擇題則試驗的樣本空間,.共有10個樣本點,且每個樣本點是等可能發(fā)生的,所以這是一個古典概型.記事件A=“甲至少抽到1道填空題,.所以,,.所以,.因此,甲至少抽到1道填空題(2)設,分別表示甲答對1道題,2道題的事件,分別表示乙答對0道題,1道題的事件,根據獨立性假定,得,.,.記事件B=“甲答對的題數(shù)比乙多”,則,且,,兩兩互斥,與,與,與分別相互獨立,所以..因此,甲答對的題數(shù)比乙多的概率為.18、(1)(2)【解析】(1)根據正弦定理把化成,利用和角公式可得從而求得角;(2)根據三角形的面積和角的值求得,由余弦定理求得邊得到的周長.試題解析:(1)由已知可得(2)又,周長為考點:正余弦定理解三角形.19、(1);(2).【解析】(1)將不等式分解因式,即可求得不等式解集;(2)根據不等式解集,考慮其對應二次函數(shù)的特征,即可求出參數(shù)的范圍.【小問1詳解】當時,即,也即,則,解得或,故不等式解集為.【小問2詳解】不等式的解集為,即的解集為,也即的解集為,故其對應二次函數(shù)的,解得.故實數(shù)的取值范圍為:.20、(1),;(2)最大值為,最小值為【解析】(1)對函數(shù)求導,根據函數(shù)在處取極值得出,再由極值為,得出,構造一個關于的二元一次方程組,便可解出的值;(2)由(1)可知,求出,利用導數(shù)研究函數(shù)在上的單調性,比較極值和端點值的大小,即可得出在上的最大值與最小值.【詳解】解:(1)由題可知,,的定義域為,,由于在處有極值,則,即,解得:,,(2)由(1)可知,其定義域是,,令,而,解得,由,得;由,得,則在區(qū)間上,,,的變化情況表如下:120單調遞減單調遞增可得,,,由于,則,所以,函數(shù)在區(qū)間上的最大值為,最小值為.【點睛】本題考查已知極值求參數(shù)值和函數(shù)在閉區(qū)間內的最值問題,考查利用導函數(shù)研究函數(shù)在給定閉區(qū)間內的單調性,以及通過比較極值和端點值確定函數(shù)在閉區(qū)間內的最值,考查運算能力.21、(1)(2)【解析】(1)利用基本量法,求出首項和公比,即可求解.(2)利用錯位相減法,即可求解.【小問1詳解】設等比數(shù)列公比為【小問2詳解】22、(1)證明見解析(2)【解析】(1)依題意可得,再根據面面垂直的性質得到平面,即可得到,即可得證;(2)取的中點為,連接,根據面面垂直的性質得到平面,連接,即可得到為與底面所成角,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)字技術對政策實施的影響分析試題及答案
- 公共政策對社區(qū)發(fā)展的影響試題及答案
- 西方國家公共服務的質量與效率分析試題及答案
- 數(shù)據包流量分析技巧試題及答案
- 探索西方政治制度的社會基礎試題及答案
- 網絡工程師考試大綱解析與試題及答案
- 機電工程新技術的市場價值評估試題及答案
- 軟件設計師考試的知識延展試題與答案
- 隨時查閱的項目管理師試題及答案
- 戰(zhàn)略性公共政策的案例分析試題及答案
- 2025年遼寧省本溪市中考一模英語試題(含答案)
- 3D打印技術考試試卷及答案
- 《物業(yè)管理師》三級測試題及參考答案
- 人教版六年級上冊數(shù)學百分數(shù)應用題專題分類復習(課件)
- 中職高教版(2023)語文職業(yè)模塊-第五單元:走近大國工匠(一)展示國家工程-了解工匠貢獻【課件】
- 【MOOC期末】《中國文化傳承與科技創(chuàng)新》(北京郵電大學)中國慕課期末網課答案
- 跨學科實踐活動5基于碳中和理念設計低碳行動方案九年級化學人教版(2024)上冊
- 計算與人工智能概論知到智慧樹章節(jié)測試課后答案2024年秋湖南大學
- 隧道工程安全文明施工組織設計方案
- 2024年關于培訓機構退費的協(xié)議書模板
- 廠房出租三方協(xié)議書范文模板
評論
0/150
提交評論