2024屆寧夏鹽池縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
2024屆寧夏鹽池縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
2024屆寧夏鹽池縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
2024屆寧夏鹽池縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
2024屆寧夏鹽池縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆寧夏鹽池縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,PA是⊙O的切線,切點為A,PO的延長線交⊙O于點B,連接AB,若∠B=25°,則∠P的度數(shù)為()A.25° B.40° C.45° D.50°2.如圖,已知是的直徑,,則的度數(shù)為()A. B. C. D.3.要使根式有意義,x的取值范圍是()A.x≠0 B.x≠1 C. D.4.在Rt△ABC中,∠C=90°,、、所對的邊分別為a、b、c,如果a=3b,那么∠A的余切值為()A. B.3 C. D.5.如圖,AB是⊙O直徑,若∠AOC=100°,則∠D的度數(shù)是()A.50° B.40° C.30° D.45°6.已知⊙O的直徑為12cm,如果圓心O到一條直線的距離為7cm,那么這條直線與這個圓的位置關系是()A.相離 B.相切 C.相交 D.相交或相切7.如圖,△ABC的頂點都在方格紙的格點上,那么的值為()A. B. C. D.8.如圖,點A、B、C在⊙O上,CO的延長線交AB于點D,∠A=50°,∠B=30°,∠ACD的度數(shù)為()A.10° B.15° C.20° D.30°9.已知反比例函數(shù),當x>0時,y隨x的增大而增大,則k的取值范圍是()A.k>0 B.k<0 C.k≥1 D.k≤110.如圖,已知點是第一象限內(nèi)橫坐標為2的一個定點,軸于點,交直線于點,若點是線段上的一個動點,,,點在線段上運動時,點不變,點隨之運動,當點從點運動到點時,則點運動的路徑長是()A. B. C.2 D.11.如圖1,E為矩形ABCD邊AD上一點,點P從點C沿折線CD﹣DE﹣EB運動到點B時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結論錯誤的是()A.AE=8cmB.sin∠EBC=C.當10≤t≤12時,D.當t=12s時,△PBQ是等腰三角形12.如圖,△ABC為⊙O的內(nèi)接三角形,若∠AOC=160°,則∠ADC的度數(shù)是()A.80° B.160° C.100° D.40°二、填空題(每題4分,共24分)13.已知扇形的圓心角為120°,弧長為6π,則它的半徑為________.14.從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),抽到有理數(shù)的概率是____.15.如圖,正方形和正方形的邊長分別為3和1,點、分別在邊、上,為的中點,連接,則的長為_________.16.已知m為一元二次方程x2-3x-2020=0的一個根,則代數(shù)式2m2-6m+2的值為___________17.方程的兩根為,,則=.18.如圖,邊長為2的正方形ABCD,以AB為直徑作⊙O,CF與⊙O相切于點E,與AD交于點F,則△CDF的面積為________________三、解答題(共78分)19.(8分)如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,過點D作DE⊥AC于E.(1)求證:AB=AC;(2)求證:DE為⊙O的切線.20.(8分)如圖,在平面直角坐標系xOy中,直線y=x+2與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c的對稱軸是x=且經(jīng)過A,C兩點,與x軸的另一交點為點B.(1)求拋物線解析式.(2)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,求出點M的坐標;若不存在,請說明理由.21.(8分)歡歡放學回家看到桌上有三個禮包,是爸爸送給歡歡和姐姐的禮物,其中禮包是芭比娃娃,和禮包都是智能對話機器人.這些禮包用外表一樣的包裝盒裝著,看不到里面的禮物.(1)歡歡隨機地從桌上取出一個禮包,取出的是芭比娃娃的概率是多少?(2)請用樹狀圖或列表法表示歡歡隨機地從桌上取出兩個禮包的所有可能結果,并求取出的兩個禮包都是智能對話機器人的概率.22.(10分)如圖,AB是⊙O的直徑,C是⊙O上一點,且AC=2,∠CAB=30°,求圖中陰影部分面積.23.(10分)一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關系:x3000320035004000y100969080(1)觀察表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關系式.(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含x(x≥3000)的代數(shù)式填表:租出的車輛數(shù)未租出的車輛數(shù)租出每輛車的月收益所有未租出的車輛每月的維護費(3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.24.(10分)如圖,拋物線的圖象過點.(1)求拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點P,使得△PAC的周長最小,若存在,請求出點P的坐標及△PAC的周長;若不存在,請說明理由;(3)在(2)的條件下,在x軸上方的拋物線上是否存在點M(不與C點重合),使得?若存在,請求出點M的坐標;若不存在,請說明理由.25.(12分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.(1)求二次函數(shù)y=ax2+2x+c的表達式;(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C,若四邊形POP′C為菱形,請求出此時點P的坐標;(3)當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.26.為了“創(chuàng)建文明城市,建設美麗臺州”,我市某社區(qū)將轄區(qū)內(nèi)一塊不超過1000平方米的區(qū)域進行美化.經(jīng)調(diào)查,美化面積為100平方米時,每平方米的費用為300元.每增加1平方米,每平方米的費用下降0.2元。設美化面積增加x平方米,美化所需總費用為y元.(1)求y與x的函數(shù)關系式;(2)當美化面積增加100平方米時,美化的總費用為多少元;(3)當美化面積增加多少平方米時,美化所需費用最高?最高費用是多少元?

參考答案一、選擇題(每題4分,共48分)1、B【分析】連接OA,由圓周角定理得,∠AOP=2∠B=50°,根據(jù)切線定理可得∠OAP=90°,繼而推出∠P=90°﹣50°=40°.【題目詳解】連接OA,由圓周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切線,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故選:B.【題目點撥】本題考查圓周角定理、切線的性質(zhì)、三角形內(nèi)角和定理,解題的關鍵是求出∠AOP的度數(shù).2、B【分析】根據(jù)同弧所對的圓周角相等可得∠E=∠B=40°,再根據(jù)直徑所對的圓周角是直角得到∠ACE=90°,最后根據(jù)直角三角形兩銳角互余可得結論.【題目詳解】∵在⊙O中,∠E與∠B所對的弧是,∴∠E=∠B=40°,∵AE是⊙O的直徑,∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°,故選:B.【題目點撥】此題主要考查了圓周角定理以及直徑所對的圓周角是直角和直角三角形兩銳角互余等知識,求出∠E=40°,是解此題的關鍵.3、D【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于或等于0,可知當x-1≥0時,二次根式有意義.【題目詳解】要使有意義,只需x-1≥0,解得x≥1.故選D.【題目點撥】本題考查二次根式定義中被開方數(shù)的取值范圍.二次根式定義中要求被開方數(shù)是非負數(shù),經(jīng)常出現(xiàn)的問題是有的同學誤認為是被開方數(shù)中的x是非負數(shù),如中x的取值范圍寫為x≥0,因此學習二次根式時需特別注意.4、A【分析】根據(jù)銳角三角函數(shù)的定義,直接得出cotA=,即可得出答案.【題目詳解】解:在Rt△ABC中,∠C=90°,a=3b,∴;故選擇:A.【題目點撥】此題主要考查了銳角三角函數(shù)的定義,熟練地應用銳角三角函數(shù)的定義是解決問題的關鍵.5、B【分析】根據(jù)∠AOB=180°,∠AOC=100°,可得出∠BOC的度數(shù),最后根據(jù)圓周角∠BDC與圓心角∠BOC所對的弧都是弧BC,即可求出∠BDC的度數(shù).【題目詳解】解:∵AB是⊙O直徑,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所對的圓周角是∠BDC,圓心角是∠BOC,∴;故答案選B.【題目點撥】本題考查同圓或等圓中,同弧或等弧所對的圓周角是圓心角的一半,在做題時遇到已知圓心角,求圓周角的度數(shù),可以通過計算,得出相應的圓心角的度數(shù),即可得出圓周角的度數(shù).6、A【分析】這條直線與這個圓的位置關系只要比較圓心到直線的距離與半徑的大小關系即可.【題目詳解】∵⊙O的直徑為12cm,∴⊙O的半徑r為6cm,如果圓心O到一條直線的距離d為7cm,d>r,這條直線與這個圓的位置關系是相離.故選擇:A.【題目點撥】本題考查直線與圓的位置關系問題,掌握點到直線的距離與半徑的關系是關鍵.7、D【分析】把∠A置于直角三角形中,進而求得對邊與斜邊之比即可.【題目詳解】解:如圖所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故選D.【題目點撥】本題考查了銳角三角函數(shù)的定義;合理構造直角三角形是解題關鍵.8、C【分析】根據(jù)圓周角定理求得∠BOC=100°,進而根據(jù)三角形的外角的性質(zhì)求得∠BDC=70°,然后根據(jù)外角求得∠ACD的度數(shù).【題目詳解】解:∵∠A=50°,

∴∠BOC=2∠A=100°,

∵∠B=30°,∠BOC=∠B+∠BDC,

∴∠BDC=∠BOC-∠B=100°-30°=70°,∴∠ACD=70°50°=20°;故選:C.【題目點撥】本題考查了圓心角和圓周角的關系及三角形外角的性質(zhì),圓心角和圓周角的關系是解題的關鍵.9、B【分析】根據(jù)反比例函數(shù)的性質(zhì),當x>0時,y隨x的增大而增大得出k的取值范圍即可.【題目詳解】解:∵反比例函數(shù)中,當x>0時,y隨x的增大而增大,∴k<0,故選:B.【題目點撥】本題考查的是反比例函數(shù)的性質(zhì),反比例函數(shù)(k≠0)中,當k>0時,雙曲線的兩支分別位于第一、三象限,在每一象限內(nèi)y隨x的增大而減??;當k<0時,雙曲線的兩支分別位于第二、四象限,在每一象限內(nèi)y隨x的增大而增大.10、D【分析】根據(jù)題意利用相似三角形可以證明線段就是點運動的路徑(或軌跡),又利用∽求出線段的長度,即點B運動的路徑長.【題目詳解】解:由題意可知,,點在直線上,軸于點,則為頂角30度直角三角形,.如下圖所示,設動點在點(起點)時,點的位置為,動點在點(終點)時,點的位置為,連接,∵,∴又∵,∴(此處也可用30°角的)∴∽,且相似比為,∴現(xiàn)在來證明線段就是點運動的路徑(或軌跡).如圖所示,當點運動至上的任一點時,設其對應的點為,連接,,∵,∴又∵,∴∴∽∴又∵∽∴∴∴點在線段上,即線段就是點運動的路徑(或軌跡).綜上所述,點運動的路徑(或軌跡)是線段,其長度為.故選:【題目點撥】本題考查坐標平面內(nèi)由相似關系確定的點的運動軌跡,難度很大.本題的要點有兩個:首先,確定點B的運動路徑是本題的核心,這要求考生有很好的空間想象能力和分析問題的能力;其次,由相似關系求出點B運動路徑的長度,可以大幅簡化計算,避免陷入坐標關系的復雜運算之中.11、D【分析】觀察圖象可知:點P在CD上運動的時間為6s,在DE上運動的時間為4s,點Q在BC上運動的時間為12s,所以CD=6,DE=4,BC=12,然后結合三角函數(shù)、三角形的面積等逐一進行判斷即可得.【題目詳解】觀察圖象可知:點P在CD上運動的時間為6s,在DE上運動的時間為4s,點Q在BC上運動的時間為12s,所以CD=6,DE=4,BC=12,∵AD=BC,∴AD=12,∴AE=12﹣4=8cm,故A正確,在Rt△ABE中,∵AE=8,AB=CD=6,∴BE==10,∴sin∠EBC=sin∠AEB=,故B正確,當10≤t≤12時,點P在BE上,BP=10﹣(t﹣10)=20﹣t,∴S△BQP=?t?(20﹣t)?=﹣t2+6t,故C正確,如圖,當t=12時,Q點與C點重合,點P在BE上,此時BP=20-12=8,過點P作PM⊥BC于M,在Rt△BPM中,cos∠PBM=,又∠PBM=∠AEB,在Rt△ABE中,cos∠AEB=,∴,∴BM=6.4,∴QM=12-6.4=5.6,∴BP≠PC,即△PBQ不是等腰三角形,故D錯誤,故選D.【題目點撥】本題考查動點問題的函數(shù)圖象,涉及了矩形的性質(zhì),勾股定理,三角形函數(shù),等腰三角形的判定等知識,綜合性較強,解題的關鍵是理解題意,讀懂圖象信息,靈活運用所學知識解決問題.12、C【分析】根據(jù)圓周角定理以及圓內(nèi)接四邊形的性質(zhì)即可解決問題;【題目詳解】解:∵∠AOC=2∠B,∠AOC=160°,

∴∠B=80°,

∵∠ADC+∠B=180°,

∴∠ADC=100°,

故選:C.【題目點撥】本題考查圓周角定理、圓內(nèi)接四邊形的性質(zhì)等知識,解題的關鍵是熟練掌握基本知識.二、填空題(每題4分,共24分)13、1【分析】根據(jù)弧長公式L=求解即可.【題目詳解】∵L=,∴R==1.故答案為1.【題目點撥】本題考查了弧長的計算,解答本題的關鍵是掌握弧長公式:L=.14、【解題分析】分析:由題意可知,從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結果,其中是有理數(shù)的有3種,由此即可得到所求概率了.詳解:∵從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結果,其中有理數(shù)有0,3.14,6共3個,∴抽到有理數(shù)的概率是:.故答案為.點睛:知道“從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結果”并能識別其中“0,3.14,6”是有理數(shù)是解答本題的關鍵.15、【分析】延長GE交AB于點O,作PH⊥OE于點H,則PH是△OAE的中位線,求得PH的長和HG的長,在Rt△PGH中利用勾股定理求解.【題目詳解】解:延長GE交AB于點O,作PH⊥OE于點H.

則PH∥AB.

∵P是AE的中點,

∴PH是△AOE的中位線,

∴PH=OA=×(3-1)=1.

∵直角△AOE中,∠OAE=45°,

∴△AOE是等腰直角三角形,即OA=OE=2,

同理△PHE中,HE=PH=1.

∴HG=HE+EG=1+1=2.

∴在Rt△PHG中,PG=故答案是:.【題目點撥】本題考查了正方形的性質(zhì)、勾股定理和三角形的中位線定理,正確作出輔助線構造直角三角形是關鍵.16、1【分析】由題意可得m2-3m=2020,進而可得2m2-6m=4040,然后整體代入所求式子計算即可.【題目詳解】解:∵m為一元二次方程x2-3x-2020=0的一個根,∴m2-3m-2020=0,∴m2-3m=2020,∴2m2-6m=4040,∴2m2-6m+2=4040+2=1.故答案為:1.【題目點撥】本題考查了一元二次方程的解和代數(shù)式求值,熟練掌握基本知識、靈活應用整體思想是解題的關鍵.17、.【解題分析】試題分析:∵方程的兩根為,,∴,,∴===.故答案為.考點:根與系數(shù)的關系.18、【分析】首先判斷出AB、BC是⊙O的切線,進而得出FC=AF+DC,設AF=x,再利用勾股定理求解即可.【題目詳解】解:∵∠DAB=∠ABC=90°,

∴AB、BC是⊙O的切線,

∵CF是⊙O的切線,

∴AF=EF,BC=EC,

∴FC=AF+DC,

設AF=x,則,DF=2-x,∴CF=2+x,

在RT△DCF中,CF2=DF2+DC2,

即(2+x)2=(2-x)2+22,解得x=,

∴DF=2-=,∴,故答案為:.【題目點撥】本題考查了正方形的性質(zhì),切線長定理的應用,勾股定理的應用,熟練掌握性質(zhì)定理是解題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2)證明見解析;【分析】(1)連接AD,根據(jù)中垂線定理不難求得AB=AC;(2)要證DE為⊙O的切線,只要證明∠ODE=90°即可.【題目詳解】(1)連接AD;∵AB是⊙O的直徑,∴∠ADB=90°.又∵DC=BD,∴AD是BC的中垂線.∴AB=AC.(2)連接OD;∵OA=OB,CD=BD,∴OD∥AC.∴∠ODE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切線.考點:切線的判定20、(1)拋物線的解析式為;(2)拋物線存在點M,點M的坐標或或或【分析】(1)根據(jù)自變量與函數(shù)值的對應關系,可得A、C點坐標,根據(jù)函數(shù)值相等的兩點關于對稱軸對稱,可得B點坐標,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)分兩種情形分別求解即可解決問題;【題目詳解】解:(1)當x=0時,y=2,即C(0,2),當y=0時,x+2=0,解得x=﹣4,即A(﹣4,0).由A、B關于對稱軸對稱,得B(1,0).將A、B、C點坐標代入函數(shù)解析式,得,解得,拋物線的解析式為y=﹣x2﹣x+2;(2)①當點M在x軸上方時,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似,如圖,設M(m,﹣x2﹣x+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2,由勾股定理,得AC=,BC=,∵AC2+BC2=AB2,∴∠ACB=90°,當△ANM∽△ACB時,∠CAB=∠MAN,此時點M與點C重合,M(0,2).當△ANM∽△BCA時,∠MAN=∠ABC,此時M與C關于拋物線的對稱軸對稱,M(﹣3,2).②當點M在x軸下方時,當△ANM∽△ACB時,∠CAB=∠MAN,此時直線AM的解析式為y=﹣x﹣2,由,解得或,∴M(2,﹣3),當△ANM′∽△BCA時,∠MAN=∠ABC,此時AM′∥BC,∴直線AM′的解析式為y=﹣2x﹣8,由,解得或,∴M(5,﹣18)綜上所述:拋物線存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似,點M的坐標(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【題目點撥】本題主要考查了二次函數(shù)的綜合,準確計算是解題的關鍵.21、(1);(2)【分析】(1)根據(jù)一共三個禮包,芭比娃娃的禮包占一種即可計算概率;(2)列出所有可能的結果,再找到符合要求的個數(shù),即可得到概率.【題目詳解】(1)根據(jù)題意,可知取出的是芭比娃娃的概率是.(2)結果:,,,,,,由圖可知,共有6種等可能的結果,而符合要求的是,兩種,∴取出的兩個禮包都是智能機器人的概率是.【題目點撥】本題考查了列表法或樹狀法求概率,正確列出所有可能結果是解題的關鍵.22、+【分析】根據(jù)扇形的面積公式進行計算即可.【題目詳解】解:連接OC且過點O作AC的垂線,垂足為D,如圖所示.∵OA=OC∴AD=1在Rt△AOD中∵∠DAO=30°∴∴OD=,∴由OA=OC;∠DAO=30可得∠COB=60°∴S扇形BOC=∴S陰影=S△AOC+S扇形BOC=+【題目點撥】本題考查扇形的面積公式,熟記扇形的面積公式是解題的關鍵.23、(1)y與x間的函數(shù)關系是.(2)填表見解析;(3)當每輛車的月租金為4050元時,公司獲得最大月收益307050元【解題分析】(1)判斷出y與x的函數(shù)關系為一次函數(shù)關系,再根據(jù)待定系數(shù)法求出函數(shù)解析式.(2)根據(jù)題意可用代數(shù)式求出出租車的輛數(shù)和未出租車的輛數(shù)即可.(3)租出的車的利潤減去未租出車的維護費,即為公司最大月收益.【題目詳解】解:(1)由表格數(shù)據(jù)可知y與x是一次函數(shù)關系,設其解析式為,將(3000,100),(3200,96)代入得,解得:.∴.將(3500,90),(4000,80)代入檢驗,適合.∴y與x間的函數(shù)關系是.(2)填表如下:租出的車輛數(shù)未租出的車輛數(shù)租出每輛車的月收益所有未租出的車輛每月的維護費(3)設租賃公司獲得的月收益為W元,依題意可得:當x=4050時,Wmax=307050,∴當每輛車的月租金為4050元時,公司獲得最大月收益307050元24、(1);(2)存在,點,周長為:;(3)存在,點M坐標為【分析】(1)由于條件給出拋物線與x軸的交點,故可設交點式,把點C代入即求得a的值,減小計算量.(2)由于點A、B關于對稱軸:直線對稱,故有,則,所以當C、P、B在同一直線上時,最?。命cA、B、C的坐標求AC、CB的長,求直線BC解析式,把代入即求得點P縱坐標.(3)由可得,當兩三角形以PA為底時,高相等,即點C和點M到直線PA距離相等.又因為M在x軸上方,故有.由點A、P坐標求直線AP解析式,即得到直線CM解析式.把直線CM解析式與拋物線解析式聯(lián)立方程組即求得點M坐標.【題目詳解】解:(1)∵拋物線與x軸交于點∴可設交點式把點代入得:∴拋物線解析式為(2)在拋物線的對稱軸上存在一點P,使得的周長最小.如圖1,連接PB、BC∵點P在拋物線對稱軸直線上,點A、B關于對稱軸對稱∵當C、P、B在同一直線上時,最小最小設直線BC解析式為把點B代入得:,解得:∴直線BC:∴點使的周長最小,最小值為.(3)存在滿足條件的點M,使得.∵∴當以PA為底時,兩三角形等高∴點C和點M到直線PA距離相等∵M在x軸上方,設直線AP解析式為解得:∴直線∴直線CM解析式為:解得:(即點C),∴點M坐標為【題目點撥】考查了待定系數(shù)法求二次函數(shù)解析式、一次函數(shù)解析式,軸對稱的最短路徑問題,勾股定理,平行線間距離處處相等,一元二次方程的解法.其中第(3)題條件給出點M在x軸上方,無需分類討論,解法較常規(guī)而簡單.25、(1)y=﹣x2+2x+3(2)(,)(3)當點P的坐標為(,)時,四邊形ACPB的最大面積值為【分析】(1)根據(jù)待定系數(shù)法,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論