




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題35不等式選講十年大數(shù)據(jù)*全景展示年份題號考點考查內(nèi)容2011文理24不等式選講絕對值不等式的解法2012文理24不等式選講絕對值不等式的解法,不等式恒成立參數(shù)取值范圍問題的解法2013卷1文理24不等式選講絕對值不等式的解法,不等式恒成立參數(shù)取值范圍問題的解法卷2文理24不等式選講多元不等式的證明2014卷1文理24不等式選講基本不等式的應(yīng)用卷2文理24不等式選講絕對值不等式的解法2015卷1文理24不等式選講絕對值不等式的解法,不等式恒成立參數(shù)取值范圍問題的解法卷2文理24不等式選講不等式的證明2016卷1文理24不等式選講分段函數(shù)的圖像,絕對值不等式的解法卷2文理24不等式選講絕對值不等式的解法,絕對值不等式的證明卷3文理24不等式選講絕對值不等式的解法,不等式恒成立參數(shù)取值范圍問題的解法2017卷1文理23不等式選講絕對值不等式的解法,不等式恒成立參數(shù)取值范圍問題的解法卷2文理23不等式選講不等式的證明卷3文理23不等式選講絕對值不等式的解法,絕對值不等式解集非空的參數(shù)取值范圍問題2018卷1文理23不等式選講絕對值不等式的解法,不等式恒成立參數(shù)取值范圍問題的解法卷2文理23不等式選講絕對值不等式的解法,不等式恒成立參數(shù)取值范圍問題的解法卷3文理23不等式選講絕對值函數(shù)的圖象,不等式恒成立參數(shù)最值問題的解法2019卷1文理23不等式選講三元條件不等式的證明卷2文理23不等式選講絕對值不等式的解法,不等式恒成立參數(shù)取值范圍問題的解法卷3文理23不等式選講三元條件最值問題的解法,三元條件不等式的證明2020卷1文理23不等式選講絕對值函數(shù)的圖像,絕對值不等式的解法卷2文理23不等式選講絕對值不等式的解法,不等式恒成立參數(shù)取值范圍問題的解法卷3文理23不等式選講三元條件不等式的證明大數(shù)據(jù)分析*預(yù)測高考考點出現(xiàn)頻率2021年預(yù)測考點120絕對值不等式的求解23次考4次2021年主要考查絕對值不等式的解法、絕對值不等式的證明,不等式恒成立參數(shù)取值范圍問題的解法等.考點121含絕對值不等式的恒成立問題23次考12次考點122不等式的證明23次考7次十年試題分類*探求規(guī)律考點120絕對值不等式的求解1.(2020全國Ⅰ文理22)已知函數(shù)SKIPIF1<0.(1)畫出SKIPIF1<0的圖像;(2)求不等式SKIPIF1<0的解集.【解析】(1)∵SKIPIF1<0,作出圖像,如圖所示:(2)將函數(shù)SKIPIF1<0的圖像向左平移SKIPIF1<0個單位,可得函數(shù)SKIPIF1<0的圖像,如圖所示:由SKIPIF1<0,解得SKIPIF1<0,∴不等式的解集為SKIPIF1<0.2.(2020江蘇23)設(shè)SKIPIF1<0,解不等式SKIPIF1<0.【答案】SKIPIF1<0【思路導(dǎo)引】根據(jù)絕對值定義化為三個不等式組,解得結(jié)果.【解析】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,∴解集為SKIPIF1<0.3.(2016全國I文理)已知函數(shù)SKIPIF1<0.(I)在圖中畫出SKIPIF1<0的圖像;(II)求不等式SKIPIF1<0的解集.【解析】(1)如圖所示:(2),.當(dāng),,解得或,;當(dāng),,解得或,或;當(dāng),,解得或,或.綜上,或或,,解集為.4.(2014全國II文理)設(shè)函數(shù)SKIPIF1<0=SKIPIF1<0(Ⅰ)證明:SKIPIF1<0SKIPIF1<02;(Ⅱ)若SKIPIF1<0,求SKIPIF1<0的取值范圍.【解析】(I)由SKIPIF1<0,有SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0≥2.(Ⅱ)SKIPIF1<0.當(dāng)時SKIPIF1<0>3時,SKIPIF1<0=SKIPIF1<0,由SKIPIF1<0<5得3<SKIPIF1<0<SKIPIF1<0;當(dāng)0<SKIPIF1<0≤3時,SKIPIF1<0=SKIPIF1<0,由SKIPIF1<0<5得SKIPIF1<0<SKIPIF1<0≤3.綜上:SKIPIF1<0的取值范圍是(SKIPIF1<0,SKIPIF1<0).5.(2011新課標(biāo)文理)設(shè)函數(shù),其中.(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)若不等式的解集為,求a的值.【解析】(Ⅰ)當(dāng)時,可化為,由此可得或.故不等式的解集為或.(
Ⅱ)由得,此不等式化為不等式組或,即SKIPIF1<0或SKIPIF1<0,因為,∴不等式組的解集為,由題設(shè)可得=,故.考點121含絕對值不等式的恒成立問題6.(2020全國Ⅱ文理22)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求不等式SKIPIF1<0的解集;(2)若SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0或SKIPIF1<0;(2)SKIPIF1<0.【思路導(dǎo)引】(1)分別在SKIPIF1<0、SKIPIF1<0和SKIPIF1<0三種情況下解不等式求得結(jié)果;(2)利用絕對值三角不等式可得到SKIPIF1<0,由此構(gòu)造不等式求得結(jié)果.【解析】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,解得:SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,無解;當(dāng)SKIPIF1<0時,SKIPIF1<0,解得:SKIPIF1<0;綜上所述:SKIPIF1<0的解集為SKIPIF1<0或SKIPIF1<0.(2)SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時取等號),SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,SKIPIF1<0的取值范圍為SKIPIF1<0.7.(2019全國II文理23)[選修4-5:不等式選講](10分)已知(1)當(dāng)時,求不等式的解集;(2)若時,,求的取值范圍.【解析】(1)當(dāng)a=1時,.當(dāng)時,;當(dāng)時,,∴不等式的解集為.(2)因為,∴.當(dāng),時,∴的取值范圍是.8.(2018全國Ⅰ文理)已知SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求不等式SKIPIF1<0的解集;(2)若SKIPIF1<0時不等式SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0故不等式SKIPIF1<0的解集為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時SKIPIF1<0成立等價于當(dāng)SKIPIF1<0時SKIPIF1<0成立.若SKIPIF1<0,則當(dāng)SKIPIF1<0時SKIPIF1<0;若SKIPIF1<0,SKIPIF1<0的解集為SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0.綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.9.(2018全國Ⅱ文理)設(shè)函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求不等式SKIPIF1<0的解集;(2)若SKIPIF1<0,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0可得SKIPIF1<0的解集為SKIPIF1<0.(2)SKIPIF1<0等價于SKIPIF1<0.而SKIPIF1<0,且當(dāng)SKIPIF1<0時等號成立.故SKIPIF1<0等價于SKIPIF1<0.由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0的取值范圍是SKIPIF1<0.10.(2018全國Ⅲ文理)設(shè)函數(shù)SKIPIF1<0.(1)畫出SKIPIF1<0的圖像;(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,求SKIPIF1<0的最小值.【解析】(1)SKIPIF1<0SKIPIF1<0的圖像如圖所示.(2)由(1)知,SKIPIF1<0的圖像與SKIPIF1<0軸交點的縱坐標(biāo)為2,且各部分所在直線斜率的最大值為3,故當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0成立,因此SKIPIF1<0的最小值為5.11.(2018江蘇)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為實數(shù),且SKIPIF1<0,求SKIPIF1<0的最小值.【解析】由柯西不等式,得SKIPIF1<0.因為SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,不等式取等號,此時SKIPIF1<0,∴SKIPIF1<0的最小值為4.12.(2017全國Ⅰ文理)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求不等式SKIPIF1<0的解集;(2)若不等式SKIPIF1<0的解集包含SKIPIF1<0,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時,不等式SKIPIF1<0等價于SKIPIF1<0.①當(dāng)SKIPIF1<0時,①式化為SKIPIF1<0,無解;當(dāng)SKIPIF1<0時,①式化為SKIPIF1<0,從而SKIPIF1<0;當(dāng)SKIPIF1<0時,①式化為SKIPIF1<0,從而SKIPIF1<0,∴SKIPIF1<0的解集為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0的解集包含SKIPIF1<0,等價于當(dāng)SKIPIF1<0時SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0的最小值必為SKIPIF1<0與SKIPIF1<0之一,∴SKIPIF1<0且SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0.13.(2017全國Ⅲ文理)已知函數(shù)SKIPIF1<0.(1)求不等式SKIPIF1<0的解集;(2)若不等式SKIPIF1<0的解集非空,求SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0無解;當(dāng)SKIPIF1<0時,由SKIPIF1<0得,SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時,由SKIPIF1<0解得SKIPIF1<0.∴SKIPIF1<0的解集為SKIPIF1<0.(2)由SKIPIF1<0得SKIPIF1<0,而SKIPIF1<0SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,故m的取值范圍為SKIPIF1<0.14.(2016全國III文理)已知函數(shù)SKIPIF1<0(Ⅰ)當(dāng)a=2時,求不等式SKIPIF1<0的解集;(Ⅱ)設(shè)函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,求a的取值范圍.【解析】(Ⅰ)當(dāng)SKIPIF1<0時,SKIPIF1<0.解不等式SKIPIF1<0,得SKIPIF1<0,因此SKIPIF1<0的解集為SKIPIF1<0.(Ⅱ)當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時等號成立,∴當(dāng)SKIPIF1<0時,SKIPIF1<0等價于SKIPIF1<0.①當(dāng)SKIPIF1<0時,①等價于SKIPIF1<0,無解.當(dāng)SKIPIF1<0時,①等價于SKIPIF1<0,解得SKIPIF1<0.∴SKIPIF1<0的取值范圍是SKIPIF1<0.15.(2015全國I文理)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(Ⅰ)當(dāng)SKIPIF1<0時,求不等式SKIPIF1<0的解集;(Ⅱ)若SKIPIF1<0的圖像與SKIPIF1<0軸圍成的三角形面積大于6,求SKIPIF1<0的取值范圍.【解析】(Ⅰ)當(dāng)SKIPIF1<0時,不等式SKIPIF1<0化為SKIPIF1<0,當(dāng)SKIPIF1<0時,不等式化為SKIPIF1<0,無解;當(dāng)SKIPIF1<0時,不等式化為SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時,不等式化為SKIPIF1<0,解得SKIPIF1<0.∴SKIPIF1<0的解集為SKIPIF1<0.(Ⅱ)有題設(shè)可得,SKIPIF1<0,∴函數(shù)SKIPIF1<0圖象與SKIPIF1<0軸圍成的三角形的三個頂點分別為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0.有題設(shè)得SKIPIF1<0,故SKIPIF1<0.∴SKIPIF1<0的取值范圍為SKIPIF1<0.16.(2014全國I文理)若SKIPIF1<0,且SKIPIF1<0.(Ⅰ)求SKIPIF1<0的最小值;(Ⅱ)是否存在SKIPIF1<0,使得SKIPIF1<0?并說明理由.【解析】(=1\*ROMANI)由SKIPIF1<0,得SKIPIF1<0,且當(dāng)SKIPIF1<0時取等號.故SKIPIF1<0SKIPIF1<0,且當(dāng)SKIPIF1<0時取等號.∴SKIPIF1<0的最小值為SKIPIF1<0.(=2\*ROMANII)由(=1\*ROMANI)知,SKIPIF1<0.由于SKIPIF1<0,從而不存在SKIPIF1<0,使得SKIPIF1<0.16.(2013全國I文理)已知函數(shù)=,=.(Ⅰ)當(dāng)=-2時,求不等式<的解集;(Ⅱ)設(shè)>-1,且當(dāng)∈[,)時,≤,求的取值范圍.【解析】(Ⅰ)當(dāng)=SKIPIF1<02時,不等式<化為,設(shè)函數(shù)=,=,其圖像如圖所示,從圖像可知,當(dāng)且僅當(dāng)時,<0,∴原不等式解集是.(Ⅱ)當(dāng)∈[,)時,=,不等式≤化為SKIPIF1<0,∴SKIPIF1<0對∈[,)都成立,故SKIPIF1<0,即≤,∴的取值范圍為(SKIPIF1<01,].17.(2012新課標(biāo)文理)已知函數(shù)SKIPIF1<0.(Ⅰ)當(dāng)SKIPIF1<0時,求不等式SKIPIF1<0的解集;(Ⅱ)若SKIPIF1<0的解集包含SKIPIF1<0,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0或SKIPIF1<0或SKIPIF1<0SKIPIF1<0或SKIPIF1<0.(2)原命題SKIPIF1<0在SKIPIF1<0上恒成立SKIPIF1<0在SKIPIF1<0上恒成立SKIPIF1<0在SKIPIF1<0上恒成立SKIPIF1<0.考點122不等式的證明18.(2020全國Ⅲ文理23)設(shè)SKIPIF1<0.(1)證明:SKIPIF1<0;(2)用SKIPIF1<0表示SKIPIF1<0的最大值,證明:SKIPIF1<0.【答案】(1)證明見解析(2)證明見解析.【思路導(dǎo)引】(1)根據(jù)題設(shè)條件SKIPIF1<0兩邊平方,再利用均值不等式證明即可;(2)思路一:不妨設(shè)SKIPIF1<0,由題意得出SKIPIF1<0,由SKIPIF1<0,結(jié)合基本不等式,即可得出證明.思路二:假設(shè)出SKIPIF1<0中最大值,根據(jù)反證法與基本不等式推出矛盾,即可得出結(jié)論.【解析】(1)證明:SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0(2)證法一:不妨設(shè)SKIPIF1<0,由SKIPIF1<0可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,取等號,SKIPIF1<0,即SKIPIF1<0.證法二:不妨設(shè)SKIPIF1<0,則SKIPIF1<0而SKIPIF1<0矛盾,∴命題得證.19.(2019全國I文理23)已知a,b,c為正數(shù),且滿足abc=1.證明:(1);(2).【解析】(1)因為,又,故有,∴.(2)因為為正數(shù)且,故有=24.∴.20.(2019全國III文理23)設(shè),且.(1)求的最小值;(2)若成立,證明:或.【解析】(1)由于,故由已知得,當(dāng)且僅當(dāng)x=,y=–,時等號成立.∴的最小值為.(2)由于,故由已知,當(dāng)且僅當(dāng),,時等號成立,因此的最小值為.由題設(shè)知,解得或.21.(2017全國Ⅱ文理)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,證明:(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)∵SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,因此SKIPIF1<0.22.(2017江蘇)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為實數(shù),且SKIPIF1<0,SKIPIF1<0,證明SKIPIF1<0.【解析】證明:由柯西不等式可得:SKIPIF1<0,因為SKIPIF1<0∴SKIPIF1<0,因此SKIPIF1<0.23.(2016全國II文理)已知函數(shù)SKIPIF1<0,M為不等式SKIPIF1<0的解集.(I)求M;(II)證明:當(dāng)a,SKIPIF1<0時,SKIPIF1<0.【解析】(I)當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 送配電線路工(配電)-中級工模擬練習(xí)題(含答案)
- 2025年度建筑工程合同模板房地產(chǎn)合同范例
- 經(jīng)濟學(xué)基礎(chǔ)試題集
- 編程算法筆試題目及答案
- 浙江國企招聘2025麗水縉云縣保安服務(wù)有限公司招聘10人筆試參考題庫附帶答案詳解
- 2025重慶機電控股集團機電工程技術(shù)有限公司招聘市場營銷安全員等崗位共11人筆試參考題庫附帶答案詳解
- 2025濟南財金投資控股集團有限公司權(quán)屬企業(yè)招聘(9人)筆試參考題庫附帶答案詳解
- 2025江西吉安市青原區(qū)兩山人力資源服務(wù)有限公司招聘5人筆試參考題庫附帶答案詳解
- 2025年河南省儲備糧管理集團招聘12人筆試參考題庫附帶答案詳解
- 2025山西省屬某大型國有企業(yè)招聘勞務(wù)派遣制30人筆試參考題庫附帶答案詳解
- 教學(xué)主管競聘培訓(xùn)機構(gòu)
- 【9語期末】黃山市歙縣2024-2025學(xué)年九年級上學(xué)期期末語文試題
- 如何做好臨床科研
- 計算機wps一級excel操作題單選題100道及答案
- 血液安全管理制度
- 2025年中國南水北調(diào)集團有限公司所屬水網(wǎng)發(fā)展研究有限公司招聘筆試參考題庫附帶答案詳解
- 施工框架協(xié)議范本
- 采購合規(guī)培訓(xùn)
- 潔凈室空調(diào)凈化系統(tǒng)驗證方案(通過BSI和華光審核)
- 上市公司執(zhí)行企業(yè)會計準(zhǔn)則案例解析
- 財務(wù)崗位招聘筆試題及解答(某大型國企)2025年
評論
0/150
提交評論