高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題1.4 極值點(diǎn)偏移第二招-含參數(shù)的極值點(diǎn)偏移問(wèn)題 (含解析)_第1頁(yè)
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題1.4 極值點(diǎn)偏移第二招-含參數(shù)的極值點(diǎn)偏移問(wèn)題 (含解析)_第2頁(yè)
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題1.4 極值點(diǎn)偏移第二招-含參數(shù)的極值點(diǎn)偏移問(wèn)題 (含解析)_第3頁(yè)
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題1.4 極值點(diǎn)偏移第二招-含參數(shù)的極值點(diǎn)偏移問(wèn)題 (含解析)_第4頁(yè)
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題1.4 極值點(diǎn)偏移第二招-含參數(shù)的極值點(diǎn)偏移問(wèn)題 (含解析)_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

含參數(shù)的極值點(diǎn)偏移問(wèn)題,在原有的兩個(gè)變?cè)猄KIPIF1<0的基礎(chǔ)上,又多了一個(gè)參數(shù),故思路很自然的就會(huì)想到:想盡一切辦法消去參數(shù),從而轉(zhuǎn)化成不含參數(shù)的問(wèn)題去解決;或者以參數(shù)為媒介,構(gòu)造出一個(gè)變?cè)男碌暮瘮?shù).★例1.已知函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn)SKIPIF1<0,求證:SKIPIF1<0.不妨設(shè)SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,因此只要證明:SKIPIF1<0SKIPIF1<0,再次換元令SKIPIF1<0,即證SKIPIF1<0構(gòu)造新函數(shù)SKIPIF1<0,SKIPIF1<0求導(dǎo)SKIPIF1<0,得SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,因此原不等式SKIPIF1<0獲證.★例2.已知函數(shù)SKIPIF1<0,SKIPIF1<0為常數(shù),若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,證明:SKIPIF1<0法二:利用參數(shù)SKIPIF1<0作為媒介,換元后構(gòu)造新函數(shù):不妨設(shè)SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,欲證明SKIPIF1<0,即證SKIPIF1<0.∵SKIPIF1<0,∴即證SKIPIF1<0,∴原命題等價(jià)于證明SKIPIF1<0,即證:SKIPIF1<0,令SKIPIF1<0,構(gòu)造SKIPIF1<0,此問(wèn)題等價(jià)轉(zhuǎn)化成為例1中思路2的解答,下略.法三:直接換元構(gòu)造新函數(shù):SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,反解出:SKIPIF1<0,故SKIPIF1<0,轉(zhuǎn)化成法二,下同,略.★例3.已知SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn),且SKIPIF1<0.(1)求證:SKIPIF1<0;

(2)求證:SKIPIF1<0.要證:SKIPIF1<0,即證:SKIPIF1<0,等價(jià)于SKIPIF1<0,也即SKIPIF1<0,等價(jià)于SKIPIF1<0,令SKIPIF1<0等價(jià)于SKIPIF1<0,也等價(jià)于SKIPIF1<0,等價(jià)于即證:SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,又令SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0,從而SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0,即證原不等式成立.【點(diǎn)評(píng)】從消元的角度,消掉參數(shù)SKIPIF1<0,得到一個(gè)關(guān)于SKIPIF1<0的多元不等式證明,利用換元思想,將多元不等式變成了一元不等式,并通過(guò)構(gòu)造函數(shù)證明相應(yīng)不等式.★例4.已知函數(shù)SKIPIF1<0,若存在SKIPIF1<0,使SKIPIF1<0,求證:SKIPIF1<0.再證:SKIPIF1<0.∵SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0.證畢.【招式演練】★設(shè)函數(shù)SKIPIF1<0的圖像與SKIPIF1<0軸交于SKIPIF1<0兩點(diǎn),(1)證明:SKIPIF1<0;(2)求證:SKIPIF1<0.(2)證明:由SKIPIF1<0,易知SKIPIF1<0且SKIPIF1<0,從而SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0,下面只要證明:SKIPIF1<0,結(jié)合對(duì)數(shù)函數(shù)SKIPIF1<0的圖像可知,只需證:SKIPIF1<0兩點(diǎn)連線的斜率要比SKIPIF1<0兩點(diǎn)連線的斜率小即可,又因?yàn)镾KIPIF1<0,即證:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,∴SKIPIF1<0,∴原不等式SKIPIF1<0成立.★設(shè)函數(shù)SKIPIF1<0,其圖像在點(diǎn)SKIPIF1<0處切線的斜率為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,設(shè)SKIPIF1<0是方程SKIPIF1<0的兩個(gè)根,SKIPIF1<0是SKIPIF1<0的等差中項(xiàng),求證:SKIPIF1<0(SKIPIF1<0為函數(shù)SKIPIF1<0的導(dǎo)函數(shù)).★設(shè)函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),且SKIPIF1<0是SKIPIF1<0的圖像上不同的兩點(diǎn),滿足SKIPIF1<0,線段SKIPIF1<0中點(diǎn)的橫坐標(biāo)為SKIPIF1<0,證明:SKIPIF1<0【解析】∵SKIPIF1<0,又依題意SKIPIF1<0,得SKIPIF1<0在定義域上單調(diào)遞增,所以要證SKIPIF1<0,只需證SKIPIF1<0,即SKIPIF1<0……不妨設(shè)SKIPIF1<0,注意到SKIPIF1<0,由函數(shù)單調(diào)性知,有SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而不等式式成立,故原不等式成立.★已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個(gè)數(shù);(2)若SKIPIF1<0有兩零點(diǎn)SKIPIF1<0(SKIPIF1<0),求證:SKIPIF1<0.【點(diǎn)評(píng)】1.方程的變形方向:①SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn),1是該函數(shù)的極值點(diǎn).②SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn),SKIPIF1<0是該函數(shù)的極值點(diǎn).2.難點(diǎn)SKIPIF1<0的證明依賴?yán)肧KIPIF1<0放縮.★已知函數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)設(shè),證明:當(dāng)時(shí),;(Ⅲ)設(shè)x1,x2是【答案】(Ⅰ)在上單調(diào)遞減,在上單調(diào)遞增;(Ⅱ)當(dāng)時(shí),f(a+x)<f(a?x)(Ⅱ)令,則.求導(dǎo)數(shù),得,當(dāng)時(shí),,在上是減函數(shù).而,,故當(dāng)時(shí),(Ⅲ)由(Ⅰ)可知,當(dāng)時(shí),函數(shù)至多有一個(gè)零點(diǎn),故,從而的最小值為,且,不妨設(shè),則,,由(Ⅱ)得,從而,于是,由(Ⅰ)知,.點(diǎn)晴:本題考查函數(shù)導(dǎo)數(shù)的單調(diào)性.不等式比較大小,函數(shù)的零點(diǎn)問(wèn)題:在(Ⅰ)中通過(guò)求導(dǎo),并判斷導(dǎo)數(shù)的符號(hào),分別討論的取值,確定函數(shù)的單調(diào)區(qū)間.(Ⅱ)通過(guò)構(gòu)造函數(shù),把不等式證明問(wèn)題轉(zhuǎn)化為函數(shù)求最值問(wèn)題,求函數(shù)當(dāng)時(shí)的最大值小于零即可.(Ⅲ)要充分利用(Ⅰ)(Ⅱ)問(wèn)的結(jié)論.★已知函數(shù)SKIPIF1<0(SKIPIF1<0).(Ⅰ)若SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間;(Ⅱ)若函數(shù)SKIPIF1<0,對(duì)于曲線SKIPIF1<0上的兩個(gè)不同的點(diǎn)SKIPIF1<0,SKIPIF1<0,記直線SKIPIF1<0的斜率為SKIPIF1<0,若SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)見(jiàn)解析由題設(shè)得SKIPIF1<0SKIPIF1<0SKIPIF1<0.又SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.不妨設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0.令SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故SKIPIF1<0.又因?yàn)镾KIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0.又由SKIPIF1<0知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0.★已知函數(shù)SKIPIF1<0,SKIPIF1<0.(Ⅰ)求過(guò)點(diǎn)SKIPIF1<0且與曲線SKIPIF1<0相切的直線方程;(Ⅱ)設(shè)SKIPIF1<0,其中SKIPIF1<0為非零實(shí)數(shù),SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的取值范圍;(Ⅲ)在(Ⅱ)的條件下,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)見(jiàn)解析∴SKIPIF1<0,解得SKIPIF1<0∴切線的斜率為SKIPIF1<0,∴切線方程為SKIPIF1<0(Ⅱ)SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有兩個(gè)極值點(diǎn),即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的范圍是SKIPIF1<0點(diǎn)睛:利用導(dǎo)數(shù)證明不等式常見(jiàn)類型及解題策略(1)構(gòu)造差函數(shù)SKIPIF1<0.根據(jù)差函數(shù)導(dǎo)函數(shù)符號(hào),確定差函數(shù)單調(diào)性,利用單調(diào)性得不等量關(guān)系,進(jìn)而證明不等式.(2)根據(jù)條件,尋找目標(biāo)函數(shù).一般思路為利用條件將求和問(wèn)題轉(zhuǎn)化為對(duì)應(yīng)項(xiàng)之間大小關(guān)系,或利用放縮、等量代換將多元函數(shù)轉(zhuǎn)化為一元函數(shù).★已知函數(shù)SKIPIF1<0.(1)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(2)若函數(shù)SKIP

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論