




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設均為正數(shù),且,,.則()A. B. C. D.2.在正項等比數(shù)列中,,為方程的兩根,則()A.9 B.27 C.64 D.813.若直線與圓有公共點,則實數(shù)的取值范圍是()A. B. C. D.4.已知點是直線上一動點,與是圓的兩條切線,為切點,則四邊形的最小面積為()A. B. C. D.5.已知直線過點且與直線垂直,則該直線方程為()A. B.C. D.6.已知函數(shù),點A、B分別為圖象在y軸右側的第一個最高點和第一個最低點,O為坐標原點,若△OAB為銳角三角形,則的取值范圍為()A. B. C. D.7.已知,成等差數(shù)列,成等比數(shù)列,則的最小值是A.0 B.1 C.2 D.48.一幾何體的三視圖如圖所示,則該幾何體的表面積為()A.16 B.20 C.24 D.289.已知集合,,則A. B. C. D.10.已知隨機事件中,與互斥,與對立,且,則()A.0.3 B.0.6 C.0.7 D.0.9二、填空題:本大題共6小題,每小題5分,共30分。11.等差數(shù)列,的前項和分別為,,且,則______.12.已知函數(shù)是定義在上的奇函數(shù),當時,,則________.13.對于正項數(shù)列,定義為的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為,則數(shù)列的通項公式為_____.14.已知向量,,若與的夾角是銳角,則實數(shù)的取值范圍為______.15.直線的傾斜角的大小是_________.16.已知,則與的夾角等于___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列為等比數(shù)列,,公比,且成等差數(shù)列.(1)求數(shù)列的通項公式;(2)設,,求使的的取值范圍.18.已知公差不為零的等差數(shù)列中,,且成等比數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令,求數(shù)列的前項和.19.如圖1,ABCD為菱形,∠ABC=60°,△PAB是邊長為2的等邊三角形,點M為AB的中點,將△PAB沿AB邊折起,使平面PAB⊥平面ABCD,連接PC、PD,如圖2,(1)證明:AB⊥PC;(2)求PD與平面ABCD所成角的正弦值(3)在線段PD上是否存在點N,使得PB∥平面MC?若存在,請找出N點的位置;若不存在,請說明理由20.已知向量.(1)若,求的值;(2)記函數(shù),求的最大值及單調遞增區(qū)間.21.數(shù)列的前n項和滿足.(1)求證:數(shù)列是等比數(shù)列;(2)若數(shù)列為等差數(shù)列,且,求數(shù)列的前n項.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】試題分析:在同一坐標系中分別畫出,,的圖象,與的交點的橫坐標為,與的圖象的交點的橫坐標為,與的圖象的交點的橫坐標為,從圖象可以看出.考點:指數(shù)函數(shù)、對數(shù)函數(shù)圖象和性質的應用.【方法點睛】一般一個方程中含有兩個以上的函數(shù)類型,就要考慮用數(shù)形結合求解,在同一坐標系中畫出兩函數(shù)圖象的交點,函數(shù)圖象的交點的橫坐標即為方程的解.2、B【解析】
由韋達定理得,再利用等比數(shù)列的性質求得結果.【詳解】由已知得是正項等比數(shù)列本題正確選項:【點睛】本題考查等比數(shù)列的三項之積的求法,關鍵是對等比數(shù)列的性質進行合理運用,屬于基礎題.3、C【解析】由題意得圓心為,半徑為.圓心到直線的距離為,由直線與圓有公共點可得,即,解得.∴實數(shù)a取值范圍是.選C.4、A【解析】
利用當與直線垂直時,取最小值,并利用點到直線的距離公式計算出的最小值,然后利用勾股定理計算出、的最小值,最后利用三角形的面積公式可求出四邊形面積的最小值.【詳解】如下圖所示:由切線的性質可知,,,且,,當取最小值時,、也取得最小值,顯然當與直線垂直時,取最小值,且該最小值為點到直線的距離,即,此時,,四邊形面積的最小值為,故選A.【點睛】本題考查直線與圓的位置關系,考查切線長的計算以及四邊形的面積,本題在求解切線長的最小值時,要抓住以下兩點:(1)計算切線長應利用勾股定理,即以點到圓心的距離為斜邊,切線長與半徑為兩直角邊;(2)切線長取最小值時,點到圓心的距離也取到最小值.5、A【解析】
根據(jù)垂直關系求出直線斜率為,再由點斜式寫出直線?!驹斀狻坑芍本€與直線垂直,可知直線斜率為,再由點斜式可知直線為:即.故選A.【點睛】本題考查兩直線垂直,屬于基礎題。6、B【解析】
△OAB為銳角三角形等價于,再運算即可得解.【詳解】解:由題意可得,,由△OAB為銳角三角形,則,即,解得:,即的取值范圍為,故選:B.【點睛】本題考查了三角函數(shù)圖像的性質,重點考查了向量數(shù)量積的運算,屬中檔題.7、D【解析】解:∵x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列根據(jù)等差數(shù)列和等比數(shù)列的性質可知:a+b=x+y,cd=xy,當且僅當x=y時取“=”,8、B【解析】
根據(jù)三視圖可還原幾何體,根據(jù)長度關系依次計算出各個側面和上下底面的面積,加和得到表面積.【詳解】有三視圖可得幾何體的直觀圖如下圖所示:其中:,,,則:,,,,幾何體表面積:本題正確選項:【點睛】本題考查幾何體表面積的求解問題,關鍵是能夠根據(jù)三視圖準確還原幾何體,從而根據(jù)長度關系可依次計算出各個面的面積.9、C【解析】分析:由題意先解出集合A,進而得到結果。詳解:由集合A得,所以故答案選C.點睛:本題主要考查交集的運算,屬于基礎題。10、C【解析】
由對立事件概率關系得到B發(fā)生的概率,再由互斥事件的概率計算公式求P(A+B).【詳解】因為,事件B與C對立,所以,又,A與B互斥,所以,故選C.【點睛】本題考查互斥事件的概率,能利用對立事件概率之和為1進行計算,屬于基本題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
取,代入計算得到答案.【詳解】,當時故答案為【點睛】本題考查了前項和和通項的關系,取是解題的關鍵.12、【解析】
根據(jù)奇偶性,先計算,再計算【詳解】因為是定義在上的奇函數(shù),所以.因為當時,所以.故答案為【點睛】本題考查了奇函數(shù)的性質,屬于常考題型.13、【解析】
根據(jù)的定義把帶入即可。【詳解】∵∴∵∴①∴②①-②得∴故答案為:【點睛】本題主要考查了新定義題,解新定義題首先需要讀懂新定義,其次再根據(jù)題目的條件帶入新定義即可,屬于中等題。14、【解析】
先求出與的坐標,再根據(jù)與夾角是銳角,則它們的數(shù)量積為正值,且它們不共線,求出實數(shù)的取值范圍,.【詳解】向量,,,,若與的夾角是銳角,則與不共線,且它們乘積為正值,即,且,求得,且.【點睛】本題主要考查利用向量的數(shù)量積解決向量夾角有關的問題,以及數(shù)量積的坐標表示,向量平行的條件等.條件的等價轉化是解題的關鍵.15、【解析】試題分析:由題意,即,∴.考點:直線的傾斜角.16、【解析】
利用再結合已知條件即可求解【詳解】由,即,故答案為:【點睛】本題考查向量的夾角計算公式,在考題中應用廣泛,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用等差中項的性質列方程,并轉化為的形式,由此求得的值,進而求得數(shù)列的通項公式.(2)先求得的表達式,利用裂項求和法求得,解不等式求得的取值范圍.【詳解】解:(1)∵成等差數(shù)列,得,∵等比數(shù)列,且,∴解得或又,∴,∴(2)∵,∴∴故由,得.【點睛】本小題主要考查等差中項的性質,考查等比數(shù)列基本量的計算,考查裂項求和法,考查不等式的解法,屬于中檔題.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)解方程組即得,即得數(shù)列的通項公式;(Ⅱ)利用裂項相消法求數(shù)列的前項和.【詳解】(Ⅰ)由題意:,化簡得,因為數(shù)列的公差不為零,,故數(shù)列的通項公式為.(Ⅱ)由(Ⅰ)知,故數(shù)列的前項和.【點睛】本題主要考查等差數(shù)列通項的求法,考查裂項相消法求和,意在考查學生對這些知識的理解掌握水平和分析推理能力.19、(1)證明見解析(2).(3)存在,PN.【解析】
(1)只需證明AB⊥面PMC,即可證明AB⊥PC;(2)由PM⊥面ABCD得∠PDM為PD與平面ABCD所成角,解△PDM即可求得PD與平面ABCD所成角的正弦值.(3)設DB∩MC=E,連接NE,可得PB∥NE,.即可.【詳解】(1)證明:∵△PAB是邊長為2的等邊三角形,點M為AB的中點,∴PM⊥AB.∵ABCD為菱形,∠ABC=60°.∴CM⊥AB,且PM∩MC=M,∴AB⊥面PMC,∵PC?面PMC,∴AB⊥PC;(2)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊥AB.∴PM⊥面ABCD,∴∠PDM為PD與平面ABCD所成角.PM,MD,PDsin∠PMD,即PD與平面ABCD所成角的正弦值為.(3)設DB∩MC=E,連接NE,則有面PBD∩面MNC=NE,∵PB∥平面MNC,∴PB∥NE.∴.線段PD上存在點N,使得PB∥平面MNC,且PN.【點睛】本題考查了面面垂直的性質定理、線面垂直的判定定理、線面角,利用線面平行的性質定理確定點N的位置是關鍵,屬于中檔題..20、(1)或,(2),增區(qū)間為:【解析】
(1)根據(jù)得到,再根據(jù)的范圍解方程即可.(2)首先根據(jù)題意得到,再根據(jù)的范圍即可得到函數(shù)的最大值和單調增區(qū)間.【詳解】因為,所以,即.因為,.所以或,即或.(2).因為,所以.所以,.因為,所以.令,得.因為,所以增區(qū)間為:.【點睛】本題第一問考查根據(jù)三角函數(shù)值求角,同時考查了平面向量平行的坐標運算,第二問考查了三角函數(shù)的最值和單調區(qū)間,屬于中檔題.21、(1)見證明;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《手術室醫(yī)院感染控制課件》
- 電視購物與多渠道融合營銷考核試卷
- 纖維板制造原理考核試卷
- 人工智能在風險評估中的自然語言處理應用考核試卷
- 計劃生育技術服務在災害應急中的應對措施考核試卷
- 《出血性疾病課件概述》
- 數(shù)字智慧方案5425丨莆田港務集團5G智慧港口項目建設方案
- 2019-2025年材料員之材料員專業(yè)管理實務自我提分評估(附答案)
- 2025年基金從業(yè)資格證之證券投資基金基礎知識真題練習試卷A卷附答案
- 海上風電運維船安全
- 變更戶主情況登記表(填寫樣式)
- 山東省醫(yī)院護理服務質量評價細則簡介
- 遼寧本溪國家地質公園環(huán)境保護自查報告
- 手衛(wèi)生相關知識考核試題與答案
- 中國工農紅軍長征教學課件
- “釣魚法”鋼管樁沉樁施工
- 噴(烤)漆房VOCs治理設施日常運行臺賬
- 南方測繪_平差易2005說明書
- 動靜脈內瘺的穿刺與護理-PPT課件
- 開姆洛克指南
- 長春二手房買賣合同模板通用版
評論
0/150
提交評論