7年級下冊數(shù)學_第1頁
7年級下冊數(shù)學_第2頁
7年級下冊數(shù)學_第3頁
7年級下冊數(shù)學_第4頁
7年級下冊數(shù)學_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

7年級下冊數(shù)學篇一:2022年新人教版七年級下冊全部數(shù)學教案

2022新人教版七年級數(shù)學下冊

全冊教案

第五章相交線與平行線

5.1.1相交線

教學目的:1.理解對頂角和鄰補角的概念,能在圖形中識別.2.掌握對頂角相等的性質和它的推證過程.

3.通過在圖形中識別對頂角和鄰補角,培養(yǎng)學生的識圖才能.重點:在較復雜的圖形中準確識別對頂角和鄰補角.難點:在較復雜的圖形中準確識別對頂角和鄰補角.教學過程

一、創(chuàng)設情境,引入課題

先請同學觀察本章的章前圖,然后引導學生觀察,并答復以下問題.學生活動:口答哪些道路是交織的,哪些道路是平行的.

教師導入:圖中的道路是有寬度的,是有限長的,而且也不是完全直的,當我們把它們看成直線時,這些直線有些是相交線,有些是平行線.相交線、平行線都有許多重要性質,并且在消費和生活中有廣泛應用.所以研究這些問題對今后的工作和學習都是有用的,也將為后面的學習做些準備.我們先研究直線相交的問題,引入本節(jié)課題.

二、探究新知,講授新課

1.對頂角和鄰補角的概念

學生活動:觀察上圖,同桌討論,教師統(tǒng)一學生觀點并板書.

【板書】∠1與∠3是直線AB、CD相交得到的,它們有一個公共頂點O,沒有公共邊,像這樣的兩個角叫做對頂角.

學生活動:讓學生找一找上圖中還有沒有對頂角,假設有,是哪兩個角?學生口答:∠2和∠4再也是對頂角.緊扣對頂角定義強調(diào)以下兩點:

〔1〕識別對頂角的要領:一看是不是兩條直線相交所成的角,對頂角與相交線是唇齒相依,哪里有相交直線,哪里就有對頂角,反過來,哪里有對頂角,哪里就有相交線;二看是不是有公共頂點;三看是不是沒有公共邊.符合這三個條件時,才能確定這兩個角是對頂角,只具備一個或兩個條件都不行.

〔2〕對頂角是成對存在的,它們互為對頂角,如∠1是∠3的對頂角,同時,∠3是∠1的對頂角,也常說∠1和∠3是對頂角.2.對頂角的性質

提出問題:我們在圖形中能準確地識別對頂角,那么對頂角有什么性質呢?學生活動:學生以小組為單位展開討論,選代表發(fā)言,井口答為什么.【板書】∵∠1與∠2互補,∠3與∠2互補〔鄰補角定義〕,∴∠l=∠3〔同角的補角相等〕.

注意:∠l與∠2互補不是給出的條件,而是分析圖形得到的;所以括號內(nèi)不填,而填鄰補角定義.或寫成:∵∠1=180°-∠2,∠3=180°-∠2〔鄰補角定義〕,∴∠1=∠3〔等量代換〕.

學生活動:例題比擬簡單,教師不做任何提示,讓學生在練習本上獨立完成解題過程,請一個學生板演。解:∠3=∠1=40°〔對頂角相等〕.∠2=180°-40°=140°〔鄰補角定義〕.

∠4=∠2=140°〔對頂角相等〕.三、范例學習

學生活動:讓學生把例題中∠1=40°這個條件換成其他條件,而結論不變,自編幾道題.變式1:把∠l=40°變?yōu)椤?-∠1=40°變式2:把∠1=40°變?yōu)椤?是∠l的3倍變式3:把∠1=40°變?yōu)椤?:∠2=2:9四、課堂小結

學生活動:表格中的結論均由學生自己口答填出.

五、布置作業(yè):課本P3練習

5.1.2垂線(第一課時)

教學目的:1.經(jīng)歷觀察、操作、想像、歸納概括、交流等活動,進一步開展空間觀念,用幾何語言準確表達才能.毛2.理解垂直概念,能說出垂線的性質―經(jīng)過一點,能畫出直線的一條垂線,并且只能畫出一條垂線‖,會用三角尺或量角器過一點畫一條直線的垂線.重點兩條直線互相垂直的概念、性質和畫法.教學過程一、創(chuàng)設問題情境

1.學生觀察教室里的課桌面、黑板面相鄰的兩條邊,方格紙的橫線和豎線……,考慮這些給大家什么印象2.學生觀察課本P3圖5.1-4考慮:固定木條a,轉動木條,當b的位置變化時,a、b所成的角a是如何變化的教師在組織學生交流中,應學生明白:當b的位置變化時,角a從銳角變?yōu)殁g角,其中∠a是直角是特殊情況.其特殊之處還在于:當∠a是直角時,它的鄰補角,對頂角都是直角,即a、b所成的四個角都是直角,都相等.3.師生共同給出垂直定義.

師生分清―互相垂直‖與―垂線‖的區(qū)別與聯(lián)絡:―互相垂直‖指兩條直線的位置關系;―垂線‖是指其中一條直線對另一條直線的命名。假設說兩條直線―互相垂直‖時,其中一條必定是另一條的―垂線‖,假設一條直線是另一條直線的―垂線‖,那么它們必定―互相垂直‖。4.垂直的表示法.

垂直用符號―⊥‖來表示,結合課本圖5.1-5說明―直線AB垂直于直線CD,垂足為O‖,那么記為AB⊥CD,垂足為O,并在圖中任意一個角處作上直角記號,如圖.5.簡單應用

(1)學生觀察課本P6圖5.1-6中的一些互相垂直的線條,并再舉出生活中其他實例.(2)判斷以下兩條直線是否垂直:

①兩條直線相交所成的四個角中有一個是直角;②兩條直線相交所成的四個角相等;③兩條直線相交,有一組鄰補角相等;④兩條直線相交,對頂角互補.二、畫圖理論,探究垂線的性質

1.學生用三角尺或量角器畫直線L的垂線.

(1)直線L(教師在黑板上畫一條直線L),畫出直線L的垂線.待學生上黑板畫出L的垂線后,教師追問學生:還能畫出L的垂線嗎(2)經(jīng)過直線L外一點B畫直線L的垂線,這樣的垂線能畫出幾條(2)過點P畫射線BN的垂線,交射線BN反向延長線于Q點;(3)過點P畫線段AB的垂線,交線AB延長線于Q點.

學生畫完圖后,教師歸結:畫一條射線或線段的垂線,就是畫它們所在直線的垂線.三、課堂小結

本節(jié)學習了互相垂直、垂線等概念,還學習了過一點畫直線的垂線的畫法,并得出垂線一條性質,你能說出相關的內(nèi)容嗎四、布置作業(yè):課本P7練習,P9.3,4,5,9.

5.1.2垂線(第二課時)

教學目的:1.經(jīng)歷觀察、操作、想像、歸納概括、交流等活動,進一步開展空間觀念,用幾何語言準確表達才能。毛2.理解垂線段的概念,理解垂線段最短的性質,體會點到直線的間隔的意義,并會度量點到直線的間隔.教學重點:―垂線段最短‖的性質,點到直線的間隔的概念及其簡單應用.教學難點:對點到直線的間隔的概念的理解.教學過程一、創(chuàng)設問題情境

1.教師展示課本圖5.1-8,提出問題:要把河中的水引到農(nóng)田P處,如何挖渠能使渠道最短2.教師以問題串形式,啟發(fā)學生考慮.

(1)問題1,上學期我們曾經(jīng)學過什么最短的知識,還記得嗎(2)問題2,假設把渠道看成是線段,它的一個端點自然是P,那么另一個端點的位置呢問題2使學生能用數(shù)學目光考慮:在連接直線L外一點P與直線L上各點的線段中,哪一條最短教具如圖:在硬紙板上固定木條L,L外一點P,轉動的木條a一端固定在點P.

使木條L與a相交,左右擺動木條a,L與a的交點A隨之變化,線段PA長度也隨之變化.PA最短時,a與L的位置關系如何(3)點A1,A2,A3……在L上,連接PA、PA2、PA3……;(4)用疊合法或度量法比擬PO、PA1、PA2、PA3……長短.5.師生交流,得出垂線的另一條性質.

教師板書:連接直線外一點與直線上各點的所有線段中,垂線段最短.簡單說成:垂線段最短.關于垂線段教師可讓學生考慮:(1)垂線段與垂線的區(qū)別聯(lián)絡.(2)垂線段與線段的區(qū)別與聯(lián)絡.二、點到直線的間隔

1.師生根據(jù)兩點間的間隔的意義給出點到直線的間隔命名.

結合課本圖形(圖5.1-9),深化認識垂線段PO:PO⊥L,∠POA=90°,O為垂足,垂線段PO的長度比其他線段PA1、PA2……中是最短的.

按照兩點間的間隔給點到直線的間隔命名,教師板書:直線外一點到這條直線的垂線段的長度,叫做點到直線的間隔.

在圖5.1-9中,PO的長度是點P到直線L的間隔,其余結論PA、PA2……長度都不是點P到L的間隔.2、練習課本P6練習

三、課堂小結:通過這節(jié)課,我們主要學習了什么呢?四、布置作業(yè):課本P8.6,P10.10,11,12,P10觀察與猜測.

5.1.3同位角、內(nèi)錯角、同旁內(nèi)角

教學目的:1、理解同位角、內(nèi)錯角、同旁內(nèi)角的概念;2、會識別同位角、內(nèi)錯角、同旁內(nèi)角.重點:同位角、內(nèi)錯角、同旁內(nèi)角的概念與識別;難點:識別同位角、內(nèi)錯角、同旁內(nèi)角。教學過程一、導入新課

前面我們研究了一條直線與另一條直線相交的情形,接下來,我們進一步研究一條直線分別與兩條直線相交的情形。

二、同位角、內(nèi)錯角、同旁內(nèi)角

如圖,直線a、b與直線c相交,或者說,兩條直線a、b被第三條直線c所截,得到八個角。我們來研究那些沒有公共頂點的兩個角的關系。

c

1

ab

8

∠1與∠2、∠4與∠8、∠5與∠6、∠3與∠7有什么位置關系?在截線的同旁,被截直線的同方向〔同上或同下〕.具有這種位置關系的兩個角叫做同位角。同位角形如字母“F〞。

篇二:七年級下冊數(shù)學概念

七年級下冊數(shù)學概念o(≧v≦)o~~好棒

第一章整式的乘除

1.

2.

3.

4.

5.

6.同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。冪的乘方,底數(shù)不變,指數(shù)相乘。積的乘方等于積中每一個因式分別乘方。同底數(shù)冪相除,底數(shù)不變,指數(shù)相加。除0外的任何數(shù)的零次方都是一單項式與單項式相乘,把他們的系數(shù),一樣字母的冪分別相乘,其余字母連同它的指數(shù)不變,作為積的因式。

7.單項式與多項式相乘,就是根據(jù)分配侓用單項式去乘多項式的每一項,再把所得的積相加。

8.多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

9.平方差公式:兩數(shù)和與這兩數(shù)差的積,等于與他們的平方差。

10.完全平方公式:

11.單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只含在被除式里含有的字母,那么連同他的指數(shù)作為商的一個因式。

12.多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

第二章相交線與平行線

1.在同一平面內(nèi),兩條直線的位置關系有相交和平行。

2.在同一平面內(nèi),假設兩條直線只有一個公共點,我們稱這兩條直線為相交線。

3.在同一平面內(nèi),不相交的兩條直線叫平行線。

4.對頂角相等。

5.假設兩個角的和是180°,稱這兩個角互為補角。

6.假設兩個角的和是90°,稱這兩個角互為余角。

7.同角或等角的余角相等,同角或等角的補角相等。

8.兩條直線相交成四個角,假設有一個是直角,那么稱這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

9,平面內(nèi),過一點有且只有一條直線與直線垂直。

10.垂線線段最短。

11、在同一平面內(nèi):同位角相等

內(nèi)錯角相等兩直線平行

同旁內(nèi)角互補

12.過直線外一點有且只有一條直線與直線平行。平行于同一條直線的兩只線平行。

13.平行線的定義:同位角相等

兩直線平行內(nèi)錯角相等

同旁內(nèi)角互補

第三章三角形

1三角形的內(nèi)角和是180°。

2直角三角形的兩個銳角互余。

3.三角形任意兩邊之和大于第三邊,三角形任意兩邊之和小于第三邊。

4.在三角形中,連接一個頂點與它對邊中點的線段,叫做這個三角形的中線,

5.三角形的三條中線交于一點,這個點成為三角形的重心。

6.在三角形中,一個內(nèi)角的角平分線與他的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。三角形的角平分線交于一點。

7.從三角形的一個頂點向他的對邊所在直線做垂線,頂點和垂足之間的線段叫做三角形的高線,簡稱三角形的高。三角形的三條高所在的直線交于一點。

8.可以完全重合的兩個圖形成為全等圖形。

9.全等三角形的形狀和大小都一樣。

10.可以完全重合的三角形叫做全等三角形。全等三角形的對應邊相等,對應角相等。

11.三邊分別相等的兩個三角形全等,簡寫“邊邊邊〞或“SSS〞.

12.兩邊及其夾角分別相等的兩個三角形,簡寫“角邊角〞或“ASA〞.

13.兩邊分別相等且其中一組對邊等角的對邊相等的兩個三角形,簡寫“角角邊〞或“AAS〞。

14.兩邊及其夾角分別相等的兩個三角形,簡寫“邊角邊〞或“SAS〞。

第四章變量之間的關系

1.事物A隨著事物B的變化而變化,A是自變量,B是因變量。在變化過程中始終不變化的量叫做常量。

2.可以用:①關系式②圖象來表示變量之間的關系。

3.用圖象表示變量之間的關系時,通常用橫軸上的點表示自變量,用豎軸上的數(shù)表示因變量。

第五章生活中的對稱軸

1.假設一個平面圖形沿一條直線折疊后,直線兩邊的局部可以互相重合,那么這個圖形為軸對稱圖形,這條直線叫做對稱軸。

2.假設兩個平面圖形沿一條直線對折后可以完全重合,那么稱這兩個圖形成軸對稱,這條直線叫做這兩個圖形的對稱軸。

3.在軸對稱圖形或兩個成軸對稱的圖形中,對應點所連的線段被對稱軸垂直平分,對應線段相等,對應角相等。

4.等腰三角形是軸對稱圖形。等腰三角形頂角的平分線,底邊上的中線,底邊上的高重合〔也稱“三線合一〞〕,他們所在的直線都是等腰三角形的對稱軸。等腰三角形的兩個底角相等。

5.線段是軸對稱圖形,垂直且平分線段的直線是它的一條對稱軸。

6.垂直于一套直線,并且平分這條線段的直線,叫做這條線段的垂直平分線。

7.線段垂直平分線上的點到這條線段兩個短點的間隔相等。

8.角是軸對稱圖形,角平分線所在的直線就是他的對稱軸。

9,角平分線上的點到這個角的兩邊的間隔相等。

第六章概率初步

1.在一定條件下,有些事情我們事先肯定他一定發(fā)生,這些事情稱為必然事件。

2.有些事情我們事先能肯定他一定不會發(fā)生,這些事情稱為不可能事件。3,必然事件與不可能事件統(tǒng)稱確定事件。

4.有許多時間我們事先無法肯定他發(fā)生不發(fā)生,這些事稱為不可能事件,也稱隨機事件。

5.在試驗次數(shù)很大時的頻率都會在一個常數(shù)附近擺動,這就是頻率的穩(wěn)定性。

6.我們把刻畫事件A發(fā)生的可能性大小的數(shù)值,稱為事件A發(fā)生的概率。

7.必然事件發(fā)生的概率為1;不可能事件發(fā)生的概率為0;不確定事件A發(fā)生的概率P(A)是0與1之間的一個常數(shù)。

8.假設一個試驗有N種等可能的結果,事件A包含其中的M種結果,那么事件A發(fā)生的概率是為:P(A)=

篇三:七年級下冊數(shù)學筆記

七年級下冊數(shù)學筆記

1.同底數(shù)冪的乘發(fā)

同底數(shù)冪的相乘,底數(shù)不變,指數(shù)相加am×an=am+n。

2.冪的乘方與積的乘方冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n=amn

積的乘方等于積里的每個因數(shù)的乘方的積(ab)n=anbn。

3.同底數(shù)冪的除法

同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。am÷an=am-n

4.整式的乘法

單項式與單項式相乘,把它們的系數(shù)、一樣字母的冪分別相乘,其余字母連同它(的指數(shù)不變,作為積的因式。

單項式與多項式相乘,就是根據(jù)分配律讓單項式去乘多項式的每一項,再把所得的積相加。

多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

5.平方差公式

兩數(shù)與這兩數(shù)差的積,等于它們的平方差?!瞐+b〕(a-b)=a2-b2

6.完全平方公式

(a+b〕2=a2+2ab+b2(a-b)2=a2-2ab+b2

7.整式的除法

單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,那么連同它的指數(shù)一起作為商的一個因式。

多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

8.兩條直線的位置關系

對頂角相等同角或等角的余角相等,同角或等角的補角相等

平面內(nèi),過一點有且只有一條直線與直線垂線。直線外一點與直線上各點連接的所有線段中,垂線段最短。9.探究直線平行的條件

兩條直線被第三條直線所截,假設同位角相等,那么這兩條直線平行。簡稱為:同位角相等,兩直線平行。

過直線外一點有且只有一條直線與這條直線平行。平行于同一條直線的兩條直線平行。

兩條直線被第三條直線所截,假設內(nèi)錯角相等,那么這兩條直線平行。簡稱為:內(nèi)錯角相等,兩直線平行。

兩條直線被第三條直線所截,假設同旁內(nèi)角互補,那么這兩條直線平行。簡稱為:同旁內(nèi)角互補,兩直線平行。

10.平行線的性質兩條平行直線被第三條直線所截,同位角相等。簡稱為:兩條直線平行,同位角相等。

兩條直線被第三條直線所截,內(nèi)錯角相等。簡稱為:兩直線平行,內(nèi)錯角相等。兩條直線被第三條直線所截,同旁內(nèi)角互補。簡稱為:兩只線平行,同旁內(nèi)角互補。

11.用尺規(guī)作角

作一個角等于角:

作法:1.作射線OB

2.以O點為圓心,任意長為半徑作弧變OA,OB于M,N

3.以O點變?yōu)閳A心,OM長為半徑作為弧變OB于點N.

4.以N點為圓心,MN的長為半徑作弧變前弧于M

5.作射線OM。

12.認識三角形

三角形的定義:由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

三角形三個內(nèi)角的和等于180度。

直角三角形的兩個銳角互余。

三角形任意兩邊之和大于第三邊。

三角形任意兩邊之差小于第三邊。

在三角形中,連接一個頂點與它對邊中點的線段,叫做這個三角形的中線。三角形的三條中線交于一點,這點稱為三角形的重心。

在三角形中,一個內(nèi)角的叫平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

三角形的三條角平分線交于一點。

從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線,簡稱三角形的高。

三角形的三條高所在的直線交于一點。

13.圖形的全等

可以完全重合的兩個圖形稱為全等圖形。

全等圖形的形狀和大小都一樣。

可以完全重合的兩個三角形叫做全等三角形。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論