2022年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.A.A.

B.

C.

D.

4.A.f(1)-f(0)

B.2[f(1)-f(0)]

C.2[f(2)-f(0)]

D.

5.

6.設(shè)y=e-2x,則y'于().A.A.2e-2xB.e-2xC.-2e-2xD.-2e2x

7.

8.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)

9.

10.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

11.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2

12.A.0B.1C.2D.任意值

13.

A.(-2,2)

B.(-∞,0)

C.(0,+∞)

D.(-∞,+∞)

14.

15.()。A.-2B.-1C.0D.2

16.A.充分條件B.必要條件C.充要條件D.以上都不對(duì)

17.()A.A.1B.2C.1/2D.-1

18.

19.

20.在空間直角坐標(biāo)系中,方程2+3y2+3x2=1表示的曲面是().

A.球面

B.柱面

C.錐面

D.橢球面

二、填空題(20題)21.設(shè)y=(1+x2)arctanx,則y=________。

22.

23.設(shè)f(x)=esinx,則=________。

24.

25.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。

26.

27.

28.

29.

30.

=_________.

31.

32.

33.

34.函數(shù)y=cosx在[0,2π]上滿足羅爾定理,則ξ=______.

35.已知平面π:2x+y-3z+2=0,則過(guò)原點(diǎn)且與π垂直的直線方程為_(kāi)_____.

36.

37.

38.

39.過(guò)坐標(biāo)原點(diǎn)且與平面2x-y+z+1=0平行的平面方程為_(kāi)_____.

40.

三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

43.

44.求曲線在點(diǎn)(1,3)處的切線方程.

45.

46.

47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

49.

50.

51.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

52.求微分方程的通解.

53.

54.求微分方程y"-4y'+4y=e-2x的通解.

55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.證明:

58.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

59.

60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

四、解答題(10題)61.

62.

63.求由方程確定的y=y(x)的導(dǎo)函數(shù)y'.

64.

65.設(shè)函數(shù)f(x)=ax3+bx2+cx+d,問(wèn)常數(shù)a,b,c滿足什么關(guān)系時(shí),f(x)分別沒(méi)有極值、可能有一個(gè)極值、可能有兩個(gè)極值?

66.

67.計(jì)算

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.求極限

六、解答題(0題)72.計(jì)算

參考答案

1.A

2.B

3.Dy=cos3x,則y'=-sin3x*(3x)'=-3sin3x。因此選D。

4.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.

可知應(yīng)選D.

5.B

6.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

7.A

8.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.

9.B

10.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

11.A由于

可知應(yīng)選A.

12.B

13.A

14.D

15.A

16.D極限是否存在與函數(shù)在該點(diǎn)有無(wú)定義無(wú)關(guān).

17.C由于f'(2)=1,則

18.C解析:

19.A

20.D對(duì)照標(biāo)準(zhǔn)二次曲面的方程可知x2+3y2+3x2=1表示橢球面,故選D.

21.因?yàn)閥=(1+x2)arctanx,所以y"=2xarctanx+(1+x2)。=2xarctanx+1。

22.e-3/2

23.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。

24.

本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

25.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx

26.1/2

27.

28.arctanx+C

29.1/2本題考查了對(duì)∞-∞型未定式極限的知識(shí)點(diǎn),

30.

31.1.

本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.

由于f(1)=2,可知

32.

解析:

33.In2

34.π

35.

解析:本題考查的知識(shí)點(diǎn)為直線方程和直線與平面的關(guān)系.

由于平面π與直線l垂直,則直線的方向向量s必定平行于平面的法向量n,因此可以取s=n=(2,1,-3).又知直線過(guò)原點(diǎn)-由直線的標(biāo)準(zhǔn)式方程可知為所求直線方程.

36.y=f(0)

37.

38.0<k≤10<k≤1解析:

39.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.

40.0

41.

列表:

說(shuō)明

42.函數(shù)的定義域?yàn)?/p>

注意

43.

44.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

45.

46.

47.

48.由等價(jià)無(wú)窮小量的定義可知

49.

50.由一階線性微分方程通解公式有

51.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

52.

53.

54.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

55.由二重積分物理意義知

56.

57.

58.

59.

60.

61.

62.由題意知,使f(x)不成立的x值,均為f(x)的間斷點(diǎn).故sin(x-3)=0或x-3=0時(shí)f(x)無(wú)意義,則間斷點(diǎn)為x-3=kπ(k=0,±

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論