2022-2023學年廣東省潮州潮安區(qū)五校聯(lián)考九年級數(shù)學第一學期期末預測試題含解析_第1頁
2022-2023學年廣東省潮州潮安區(qū)五校聯(lián)考九年級數(shù)學第一學期期末預測試題含解析_第2頁
2022-2023學年廣東省潮州潮安區(qū)五校聯(lián)考九年級數(shù)學第一學期期末預測試題含解析_第3頁
2022-2023學年廣東省潮州潮安區(qū)五校聯(lián)考九年級數(shù)學第一學期期末預測試題含解析_第4頁
2022-2023學年廣東省潮州潮安區(qū)五校聯(lián)考九年級數(shù)學第一學期期末預測試題含解析_第5頁
免費預覽已結束,剩余18頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.反比例函數(shù)y=﹣的圖象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.的值等于()A. B. C. D.3.下列說法正確的是()A.一顆質地硬幣已連續(xù)拋擲了5次,其中拋擲出正面的次數(shù)為1次,則第6次一定拋擲出為正面B.某種彩票中獎的概率是2%,因此買100張該種彩票一定會中獎C.天氣預報說2020年元旦節(jié)紫云下雨的概率是50%,所以紫云2020年元旦節(jié)這天將有一半時間在下雨D.某口袋中有紅球3個,每次摸出一個球是紅球的概率為100%4.已知,一次函數(shù)與反比例函數(shù)在同一直角坐標系中的圖象可能()A. B.C. D.5.如圖,在平面直角坐標系內,四邊形OABC是矩形,四邊形ADEF是正方形,點A,D在x軸的正半軸上,點F在BA上,點B、E均在反比例函數(shù)y=(k≠0)的圖象上,若點B的坐標為(1,6),則正方形ADEF的邊長為()A.1 B.2 C.4 D.66.在下列幾何體中,主視圖、左視圖和俯視圖形狀都相同的是()A. B. C. D.7.關于x的一元二次方程x2+mx+m2﹣7=0的一個根是﹣2,則m的值可以是()A.﹣1 B.3 C.﹣1或3 D.﹣3或18.有三張正面分別標有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.9.如圖,點,為直線上的兩點,過,兩點分別作軸的平行線交雙曲線()于、兩點.若,則的值為()A.12 B.7 C.6 D.410.如圖,已知ΔABC~ΔADB,點D是AC的中點,AC=4,則AB的長為()A.2 B.4 C.22 D.11.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)12.反比例函數(shù),下列說法不正確的是()A.圖象經過點(1,﹣1) B.圖象位于第二、四象限C.圖象關于直線y=x對稱 D.y隨x的增大而增大二、填空題(每題4分,共24分)13.將二次函數(shù)化成的形式為__________.14.如圖,扇形OAB,∠AOB=90,⊙P與OA、OB分別相切于點F、E,并且與弧AB切于點C,則扇形OAB的面積與⊙P的面積比是.15.若點A(a,b)在雙曲線y=上,則代數(shù)式ab﹣4的值為_____.16.如圖,把直角三角板的直角頂點放在破損玻璃鏡的圓周上,兩直角邊與圓弧分別交于點、.量得,,則該圓玻璃鏡的半徑是__________.17.已知,則=_____.18.某日6時至10時,某交易平臺上一種水果的每千克售價、每千克成本與交易時間之間的關系分別如圖1、圖2所示(圖1、圖2中的圖象分別是線段和拋物線,其中點P是拋物線的頂點).在這段時間內,出售每千克這種水果收益最大的時刻是_____,此時每千克的收益是_________三、解答題(共78分)19.(8分)如圖,已知二次函數(shù)的頂點為(2,),且圖象經過A(0,3),圖象與x軸交于B、C兩點.(1)求該函數(shù)的解析式;(2)連結AB、AC,求△ABC面積.20.(8分)拋物線與軸交于兩點(點在點的左側),與軸交于點.已知,拋物線的對稱軸交軸于點.(1)求出的值;(2)如圖1,連接,點是線段下方拋物線上的動點,連接.點分別在軸,對稱軸上,且軸.連接.當?shù)拿娣e最大時,請求出點的坐標及此時的最小值;(3)如圖2,連接,把按照直線對折,對折后的三角形記為,把沿著直線的方向平行移動,移動后三角形的記為,連接,,在移動過程中,是否存在為等腰三角形的情形?若存在,直接寫出點的坐標;若不存在,請說明理由.21.(8分)已知拋物線y=-x2+bx+c與直線y=-4x+m相交于第一象限內不同的兩點A(5,n),B(3,9),求此拋物線的解析式.22.(10分)某商店經過市場調查,整理出某種商品在第()天的售價與銷量的相關信息如下表.已知該商品的進價為每件30元,設銷售該商品每天的利潤為元.(1)求與的函數(shù)關系是;(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?23.(10分)如圖,直線l的解析式為y=x,反比例函數(shù)y=(x>0)的圖象與l交于點N,且點N的橫坐標為1.(1)求k的值;(2)點A、點B分別是直線l、x軸上的兩點,且OA=OB=10,線段AB與反比例函數(shù)圖象交于點M,連接OM,求△BOM的面積.24.(10分)在平面直角坐標系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點P到圓心O的距離d,滿足,則稱點P為⊙O的“隨心點”.(1)當⊙O的半徑r=2時,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“隨心點”是;(2)若點E(4,3)是⊙O的“隨心點”,求⊙O的半徑r的取值范圍;(3)當⊙O的半徑r=2時,直線y=-x+b(b≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O的“隨心點”,直接寫出b的取值范圍.25.(12分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點.(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式.(2)求△AOB的面積.(3)根據圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.26.如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,(1)求證:AF=DC;(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據反比例函數(shù)中k0,圖像必過二、四象限即可解題.【詳解】解:∵-10,根據反比例函數(shù)性質可知,反比例函數(shù)y=﹣的圖象在第二、四象限,故選C.【點睛】本題考查了反比例函數(shù)的圖像和性質,屬于簡單題,熟悉反比例函數(shù)的性質是解題關鍵.2、D【分析】根據特殊角的三角函數(shù)即得.【詳解】故選:D.【點睛】本題考查特殊角的三角函數(shù),解題關鍵是熟悉,及的正弦、余弦和正切值.3、D【分析】概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生.【詳解】解:A、一顆質地硬幣已連續(xù)拋擲了5次,其中拋擲出正面的次數(shù)為1次,則第6次一定拋擲出為正面,是隨機事件,錯誤;

B、某種彩票中獎的概率是2%,因此買100張該種彩票不一定會中獎,錯誤;

C、下雨的概率是50%,是說明天下雨的可能性是50%,而不是明天將有一半時間在下雨,錯誤;

D、正確.

故選:D.【點睛】正確理解概率的含義是解決本題的關鍵.注意隨機事件的條件不同,發(fā)生的可能性也不等.4、A【分析】根據反比例函數(shù)圖象確定b的符號,結合已知條件求得a的符號,由a,b的符號確定一次函數(shù)圖象所經過的象限.【詳解】解:若反比例函數(shù)經過第一、三象限,則.所以.則一次函數(shù)的圖象應該經過第一、二、三象限;若反比例函數(shù)經過第二、四象限,則a<1.所以b>1.則一次函數(shù)的圖象應該經過第二、三、四象限.故選項A正確;故選A.【點睛】本題考查了反比例函數(shù)的圖象性質和一次函數(shù)函數(shù)的圖象性質,要掌握它們的性質才能靈活解題.5、B【分析】由點B的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出k值,設正方形ADEF的邊長為a,由此即可表示出點E的坐標,再根據反比例函數(shù)圖象上點的坐標特征即可得出關于a的一元二次方程,解之即可得出結論.【詳解】∵點B的坐標為(1,1),反比例函數(shù)y的圖象過點B,∴k=1×1=1.設正方形ADEF的邊長為a(a>0),則點E的坐標為(1+a,a).∵反比例函數(shù)y的圖象過點E,∴a(1+a)=1,解得:a=2或a=﹣3(舍去),∴正方形ADEF的邊長為2.故選:B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、矩形的性質以及正方形的性質,根據反比例函數(shù)圖象上點的坐標特征得出關于a的一元二次方程是解答本題的關鍵.6、C【分析】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依次找到主視圖、左視圖和俯視圖形狀都相同的圖形即可.【詳解】解:A、圓臺的主視圖和左視圖相同,都是梯形,俯視圖是圓環(huán),故選項不符合題意;B、三棱柱的主視圖和左視圖、俯視圖都不相同,故選項不符合題意;C、球的三視圖都是大小相同的圓,故選項符合題意.D、圓錐的三視圖分別為等腰三角形,等腰三角形,含圓心的圓,故選項不符合題意;故選C.【點睛】本題考查了三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.7、C【分析】先把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,然后解關于m的方程即可.【詳解】解:把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,解得m=﹣1或1.故選:C.【點睛】本題主要考察一元一次方程的解及根與系數(shù)的關系,解題關鍵是熟練掌握計算法則.8、C【詳解】畫樹狀圖得:

∵共有6種等可能的結果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,

∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【點睛】本題考查運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.9、C【分析】延長AC交x軸于E,延長BD交x軸于F.設A、B的橫坐標分別是a,b,點A、B為直線y=x上的兩點,A的坐標是(a,a),B的坐標是(b,b).則AE=OE=a,BF=OF=b.根據BD=2AC即可得到a,b的關系,然后利用勾股定理,即可用a,b表示出所求的式子從而求解.【詳解】延長AC交x軸于E,延長BD交x軸于F.設A、B的橫坐標分別是a,b.∵點A、B為直線y=x上的兩點,∴A的坐標是(a,a),B的坐標是(b,b).則AE=OE=a,BF=OF=b.∵C、D兩點在交雙曲線(x>0)上,則CE,DF,∴BD=BF﹣DF=b,AC=a.又∵BD=2AC,∴b2(a),兩邊平方得:b22=4(a22),即b24(a2)﹣1.在直角△OCE中,OC2=OE2+CE2=a2,同理OD2=b2,∴4OC2﹣OD2=4(a2)﹣(b2)=1.故選:C.【點睛】本題考查了反比例函數(shù)與勾股定理的綜合應用,正確利用BD=2AC得到a,b的關系是關鍵.10、C【分析】根據相似三角形的性質列出比例式求解即可.【詳解】解:∵點D是AC的中點,AC=4,,

∴AD=2,

∵ΔABC~ΔADB,

∴AD∴2∴AB=22,

故選C【點睛】本題考查了相似三角形的性質,能夠根據相似三角形列出比例式是解答本題的關鍵,難度不大.11、C【解析】直接利用位似圖形的性質得出對應點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質,數(shù)形結合思想解題是本題的解題關鍵.12、D【分析】反比例函數(shù)y=(k≠0)的圖象k>0時位于第一、三象限,在每個象限內,y隨x的增大而減小;k<0時位于第二、四象限,在每個象限內,y隨x的增大而增大;在不同象限內,y隨x的增大而增大,根據這個性質選擇則可.【詳解】A、圖象經過點(1,﹣1),正確;B、圖象位于第二、四象限,故正確;C、雙曲線關于直線y=x成軸對稱,正確;D、在每個象限內,y隨x的增大而增大,故錯誤,故選:D.【點睛】此題考查反比例函數(shù)的性質,熟記性質并運用解題是關鍵.二、填空題(每題4分,共24分)13、【分析】利用配方法整理即可得解.【詳解】解:,所以.故答案為.【點睛】本題考查了二次函數(shù)的解析式有三種形式:(1)一般式:為常數(shù));(2)頂點式:;(3)交點式(與軸):.14、【詳解】依題意連接OC則P在OC上,連接PF,PE則PF⊥OA,PE⊥OB,由切線長定理可知四邊形OEPF為正方形,且其邊長即⊙P的半徑(設⊙P的半徑為r)∴OP=又OC=OP+PC=+r=(1+)r即扇形OAB的(1+)r,∴15、﹣1【分析】根據反比例函數(shù)圖象上點的坐標特征得到k=xy,由此求得ab的值,然后將其代入所求的代數(shù)式進行求值即可.【詳解】解:∵點A(a,b)在雙曲線y=上,∴3=ab,∴ab﹣4=3﹣4=﹣1.故答案為:﹣1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)(k是常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.16、1.【解析】解:∵∠MON=90°,∴為圓玻璃鏡的直徑,,∴半徑為.故答案為:1.17、【解析】根據題意,設x=5k,y=3k,代入即可求得的值.【詳解】解:由題意,設x=5k,y=3k,∴==.故答案為.【點睛】本題考查了分式的求值,解題的關鍵是根據分式的性質對已知分式進行變形.18、9時元【分析】觀察圖象找出點的坐標,利用待定系數(shù)法即可求出關于x的函數(shù)關系式,=者做差后,利用二次函數(shù)的性質,即可解決最大收益問題.【詳解】解:設交易時間為x,售價為,成本為,則設圖1、圖2的解析式分別為:,依題意得∴解得∴∴出售每千克這種水果收益:∵∴當時,y取得最大值,此時:∴在這段時間內,出售每千克這種水果收益最大的時刻是9時,此時每千克的收益是元故答案為:9時;元【點睛】本題考查了待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質,解題的關鍵是:觀察函數(shù)圖象根據點的坐標,利用待定系數(shù)法求出關于x的函數(shù)關系式.三、解答題(共78分)19、(1);(2).【分析】(1)設該二次函數(shù)的解析式為,因為頂點(2,-1),可以求出h,k,將A(0,3)代入可以求出a,即可得出二次函數(shù)解析式.(2)由(1)求出函數(shù)解析式,令y等于0可以求出函數(shù)圖像與x軸的兩個交點為B,C兩點,然后利用面積公式,即可求出三角形ABC的面積.【詳解】(1)設該二次函數(shù)的解析式為∵頂點為(2,)∴又∵圖象經過A(0,3)∴即∴該拋物線的解析式為(2)當時,,解得,∴C(3,0)B(1,0)得∴.【點睛】熟練掌握待定系數(shù)法求二次函數(shù)解析式和三角形的面積公式是本題的解題關鍵.20、(1);(2),最小值為;(3)或或或或.【分析】(1)由拋物線的對稱性可得到,然后將A、B、C坐標代入拋物線解析式,求出a、b、c的值即可得到拋物線解析式;(2)利用待定系數(shù)法求出直線BC解析式,作軸交于點,設,則,表示出PQ的長度,然后得到△PBC的面積表達式,根據二次函數(shù)最值問題求出P點坐標,再把向左移動1個單位得,連接,易得即為最小值;(3)由題意可知在直線上運動,設,則,分別討論:①,②,③,建立方程求出m的值,即可得到的坐標.【詳解】解:(1)由拋物線的對稱性知,把代入解析式,得解得:拋物線的解析式為.(2)設BC直線解析式為為將代入得,,解得∴直線的解析式為.作軸交于點,如圖,設,則,.當時,取得最大值,此時,.把向左移動1個單位得,連接,如圖.(3)由題意可知在直線上運動,設,則,∴①當時,,解得此時或;②當時,,解得此時或③當時,,解得,此時,綜上所述的坐標為或或或.【點睛】本題考查二次函數(shù)的綜合問題,涉及待定系數(shù)法求函數(shù)解析式,面積最值與線段最值問題,等腰三角形存在性問題,是中考??嫉膲狠S題,難度較大,采用數(shù)形結合與分類討論是解題的關鍵.21、y=-x2+4x+2.【分析】根據點B的坐標可求出m的值,寫出一次函數(shù)的解析式,并求出點A的坐標,最后利用點A、B兩點的坐標求拋物線的解析式.【詳解】(1)∵直線y=﹣4x+m過點B(3,9),∴9=﹣4×3+m,解得:m=1,∴直線的解析式為y=﹣4x+1.∵點A(5,n)在直線y=﹣4x+1上,∴n=﹣4×5+1=1,∴點A(5,1),將點A(5,1)、B(3,9)代入y=﹣x2+bx+c中,得:,解得:,∴此拋物線的解析式為y=﹣x2+4x+2.【點睛】本題考查了利用待定系數(shù)法求二次函數(shù)的解析式,熟練掌握待定系數(shù)法是解題的關鍵.22、(1);(2)銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元【分析】(1)根據利潤=(每件售價-進價)×每天銷量,分段計算即可得出函數(shù)關系式;(2)根據所得函數(shù)的性質,分別求出最大值,比較即可.【詳解】解:(1)當時,當時,故與的函數(shù)關系式為:,(為整數(shù))(2)當時,∵,∴當時,有最大值6050元;當時,,∵,∴隨的增大而減小.當時,有最大值6000元.∵,∴當時,有最大值6050元.∴銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.【點睛】本題考查的知識點是二次函數(shù)的實際應用,掌握二次函數(shù)的性質是解此題的關鍵.23、(1)27;(2)2【分析】(1)把x=1代入y=x,求得N的坐標,然后根據待定系數(shù)法即可求得k的值;(2)根據勾股定理求得A的坐標,然后利用待定系數(shù)法求得直線AB的解析式,再和反比例函數(shù)的解析式聯(lián)立,求得M的坐標,然后根據三角形面積公式即可求得△BOM的面積.【詳解】解:(1)∵直線l經過N點,點N的橫坐標為1,∴y=×1=,∴N(1,),∵點N在反比例函數(shù)y=(x>0)的圖象上,∴k=1×=27;(2)∵點A在直線l上,∴設A(m,m),∵OA=10,∴m2+(m)2=102,解得m=8,∴A(8,1),∵OA=OB=10,∴B(10,0),設直線AB的解析式為y=ax+b,∴,解得,∴直線AB的解析式為y=﹣3x+30,解得或,∴M(9,3),∴△BOM的面積==2.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點,一次函數(shù)圖象上點的坐標特征,待定系數(shù)法求反比例函數(shù)的解析式和一次函數(shù)的解析式,求得、點的坐標是解題的關鍵.24、(1)A,C;(2);(3)1≤b≤或-≤b≤-1.【分析】(1)根據已知條件求出d的范圍:1≤d≤3,再將各點距離O點的距離,進行判斷是否在此范圍內即可,滿足條件的即為隨心點;(2)根據點E(4,3)是⊙O的“隨心點”,可根據,求出d=5,再求出r的范圍即可;(3)如圖a∥b∥c∥d,⊙O的半徑r=2,求出隨心點范圍,再分情況點N在y軸正半軸時,當點N在y軸負半軸時,分情況討論即可.【詳解】(1)∵⊙O的半徑r=2,

∴=3,=1∴1≤d≤3∵A(3,0),

∴OA=3,在范圍內

∴點A是⊙O的“隨心點”∵B(0,4)∴OB=4,而4>3,不在范圍內∴B是不是⊙O的“隨心點”,

∵C(,2),

∴OC=,在范圍內

∴點C是⊙O的“隨心點”,

∵D(,),

∴OD=<1,不在范圍內

∴點D不是⊙O的“隨心點”,

故答案為:A,C(2)∵點E(4,3)是⊙O的“隨心點”∴OE=5,即d=5若,∴r=10若,∴(3)

∵如圖a∥b∥c∥d,⊙O的半徑r=2,隨心點范圍∴∵直線MN的解析式為y=x+b,

∴OM=ON,

①點N在y軸正半軸時,

當點M是⊙O的“隨心點”,此時,點M(-1,0),

將M(-1,0)代入直線MN的解析式y(tǒng)=x+b中,解得,b=1,

即:b的最小值為1,

過點O作OG⊥M'N'于G,

當點G是⊙O的“隨心點”時,此時OG=3,

在Rt△ON'G中,∠ON'G=45°,

∴GO=3∴在Rt△GNN’中,===,

b的最大值為,

∴1≤b≤,

②當點N在y軸負半軸時,同①的方法得出-≤b≤-1.

綜上所述,b的取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論