




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年中考數(shù)學(xué)壓軸題1.【問題情境】張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣一個問題:如圖1,在△4BC中,AB^AC,點尸為邊BC上的任一點,過點P作PDL4B,PELAC,垂足分別為。、E,過點C作垂足為兄求證:PD+PE=CF.圖① 圖②小軍的證明思路是:如圖2,連接力尸,由△ZBP與尸面積之和等于△Z8C的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點尸作尸GJ_CF,垂足為G,可以證得:PD=GF,PE=CG,則尸。+PE=C廠.【變式探究】如圖3,當(dāng)點尸在8c延長線上時,其余條件不變,求證:PD-PE=CF;請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:【結(jié)論運用】如圖4,將矩形48CQ沿EF折疊,使點。落在點3上,點C落在點C'處,點尸為折痕E尸上的任一點,過點P作PGLBE、PH1BC,垂足分別為G、H,若“。=8,CF=3,求PG+PH的值:【遷移拓展】圖5是一個航模的截面示意圖.在四邊形48。中,E為48邊上的一點,EDLAD,ECLCB,垂足分別為。、C,且AD?CE=DE?BC,AB=2V13dm,AD=3dm,BD=V37dm.M、N分別為/E、BE的中點,連接。M、CN,求與△CEN的周長之和.圖④ 圖⑤解:【問題情境】證明:(小軍的方法)連接4尸,如圖②':PD1.AB,PE工AC,CFL4B,且Saabc=Saabp+S"CP,:?%B?CF=%B?PD+3c?PE.':AB=AC,:,CF=PD+PE.(小俊的方法)過點尸作尸GJ_CR垂足為G,如圖②.9:PDLAB,CF.LAB,PG工FC,:?/CFD=/FDP=/FGP=9G°.???四邊形PDFG是矩形.:?DP=FG,NDPG=900.AZCGP=90°.VPE1AC,???NC£P(guān)=90°.:?/PGC=/CEP.?:NBDP=NDPG=90°.:.PG//AB.:"GPC=/B.u:AB=ACf:,/B=/ACB.:?/GPC=/ECP.在△PGC和△(?£尸中,(LPGC=乙CEP\z.GPC=^lECP(PC=CP:.△PG8/\CEP.:.CG=PE.:,CF=CG+FG=PE+PD.【變式探究】證明:連接《尸,如圖③.?:PD_LAB,PEL4C,CFUB,且S^ABC=S^ABP-S"CP,111:?一AB?CF=3AB/PD-Yc?PE.2 2 2*:AB=AC,:.CF=PD-PE.【結(jié)論運用】過點E作垂足為。,如圖④,??,四邊形/8CO是矩形,:?AD=BC,ZC=ZJDC=90°.VJD=8,CF=3,:.BF=BC-CF=AD-CF=5.由折疊可得:DF=BF,/BEF=/DEF.:.DF=5.VZC=90°,:.DC=a/DF2-CF2=V52~32=4.:EQLBC,ZC=ZJDC=90°,???N£QC=90°=ZC=ZJDC.??四邊形E0c。是矩形.;?EQ=DC=4.:AD//BC,:./DEF=/EFB.,/ABEF=NDEF,:?NBEF=/EFB.:.BE=BF.由問題情境中的結(jié)論可得:PG+PH=EQ.:?PG+PH=4.??PG+P〃的值為4.【遷移拓展】延長40、BC交于點F,作凡垂足為〃,如圖⑤.:AD-CE=DE?BC,,ADBCDE-EC'■:EDLAD,ECLCB,:?/ADE=NBCE=90°.,"DEsABCE.:.NA=NCBE.:?FA=FB.由問題情境中的結(jié)論可得:ED+EC=BH.設(shè)DH=xdm,則力〃=40+0〃=(3+x)dm.〈BHLAF,:.ZBHA=90°.:.BH1=BD1-DH2=AB2-AH2.9:AB=2y/13t40=3,BD=V37,/.(V37)2-/=(2g)2-(3+x)2.解得:X=l.:.BH2=BD2-DH2=37-1=36.**BH=Z6dm.:.ED+EC=6.ZADE=ZBCE=90°,且A/、N分別為力E、BE的中點,:.DM=AM=EM=CN=BN=EN=^BE.??△OEM與△CEN的周長之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC
=DE+EC+AB=6+2V13....△OEM與△CEN的周長之和為(6+2V13)dm.A圖②2.如圖,在。。的內(nèi)接△48C中,ZJC5=90°,AC=2BC,過C作48的垂線/交。0于另一點D,垂足為E.設(shè)P是配上異于4C的一個動點,射線/尸交/于點凡連接PC與PD,PD交4B于點、G.(1)求證:APACsAPDF;
(2)若48=5,AP=BP,求尸£)的長:(3)在點尸運動過程中,設(shè)翌=x,tanZAFD—y,求y與x之間的函數(shù)關(guān)系式.(不要求寫出x的取值范圍)B(1)證明:VZ/4C5=90°,:.AB是直徑,又":AC=AD,二尸=180°-N/尸。=180°—而所對的圓周角=180°—公所對的圓周角=加所對的圓周角尸C.在△巴(7和△2£)尸中,(/.APC=4DPFl^.PAC=/.PDF':.4PACs?PDF.(2)解:如圖1,連接PO,則由Q=豆,有尸O_L48,且/A48=45°,△ZP。、△/E尸都為等腰直角三角形.圖1 A在RtZ\/8C中,
:AC=2BC,:.AB2=BC2+AC2=5BC2,*8=5,:.BC=V5,AC=2y[5,BCr.V5.?.C£=/C?sinN3/C=/U—=2V5?—=2,AB5AC「2V5AE=AC9cosZBAC=AC9—=2V5-——=4,A85???△ZE尸為等腰直角三角形,:.EF=AE=4,:?FD=FC+CD=QEF-CE)+2CE=EF+CE=4+2=6.1 c,.,△4PO為等腰直角三角形,4。=%8=會..D5渡?AP-—2—?:APDFsAPAC,竺PA? =,FDCA5V2PD亍=玄’:.PD=(3)解:如圖2,過點G作G//L48,交4c于〃,連接“8,以,8為直徑作圓,連接CG并延長交CG并延長交。。于Q,圖2:HCLCB,GHLGB,:.C.G都在以為直徑的圓上,,NHBG=Z.ACQ,VC,。關(guān)于48對稱,G在48上,二2、尸關(guān)于48對稱,:.AP=AQ,:.ZPCA=ZACQ,:.NHBG=NPCA.■:APACsAPDF,NPCA=ZPFD=NAFD,:.y=tanZAFD=tanZPCA=tanZHBG=匿.":HG=tanZHAG'AG=tanZBAC-AG=會?AG=5?4G,. 1AG1?-.y=2BG=2x-.如圖,在RtA4BC中,ZACB=90°,以斜邊上的中線C£>為直徑作。。,與BC交于點M,與48的另一個交點為E,過M作A/NL48,垂足為N.(1)求證:是。。的切線:(2)右。。的直徑為5,sin8=可,求E£)的長.?:OC=OM,:?4OCM=4OMC,在RtZXXBC中,C。是斜邊48上的中線,:.CD=^AB=BD,:.NDCB=NDBC,:.4OMC=NDBC,:.OM//BD,■:MNLBD,:.OMLMN,過O,...MN是。。的切線;(2)解:連接。M,CE, 圖2是。。的直徑,:.ZCED=90Q,NDMC=90°,即DM1.BC,CEYAB,由(1)知:BD=CD=5,二〃為8C的中點,Vsin5=4.?.cos8=耳,在RtA^A/D中,BM=BD,cos^=4,:?BC=2BM=8,在RtZ\CE3中,BE=BC?cosB=*532 7:.ED=BE-80=學(xué)一5=g..已知NMPN的兩邊分別與OO相切于點4B,OO的半徑為八(1)如圖1,點C在點4,8之間的優(yōu)弧上,/MPN=80°,求N4C8的度數(shù);
(2)如圖2,點C在圓上運動,當(dāng)PC最大時,要使四邊形4尸8c為菱形,N4尸8的度數(shù)應(yīng)為多少?請說明理由;(3)若尸C交。。于點。,求第(2)問中對應(yīng)的陰影部分的周長(用含/?的式子表示).圖1 圖2 (備用圖)【解答】解:(1)如圖1,連接。/,OB,圖1,:PA,尸8為0。的切線,;.NPAO=NPBO=90°,*/ZAPB+ZPACh-ZPBO+ZAOB=360°,4尸8+408=180°,VZJP5=80°,.,.408=100°,/.ZACB=50°;(2)如圖2,當(dāng)4P8=60°時,四邊形ZP8c是菱形,連接。1,OB,由(1)可知,NAOB+NAPB=180°,VZJP5=60°,.?.408=120°,AZJC5=60°=NAPB,?.?點c運動到尸c距離最大,...PC經(jīng)過圓心,':PA,尸8為。。的切線,:.PA=PB,NAPC=NBPC=30°,又,:PC=PC,:.△APgtXBPC(SAS),:.^ACP=ZBCP=3>0°,AC=BC,:.ZAPC=ZACP=30°,:.AP=AC,:.AP=AC=PB=BC,四邊形ZP8C是菱形;(3);。。的半徑為r,:.OA=r,OP=2r,:.AP=V3r,PD=r,VZJOP=90°-ZAPO=60°,的長度=6睛?=圻,陰影部分的周長=口+2。+麗=+$=(V3+1+J)r..如圖,叫為。。的切線,尸8c為。。的割線,尸于點O,△/£>(7的外接圓與8C的另一個交點為E.證明:NBAE=NACB.【解答】證明:連接。4,OB,OC,BD.':OALAP,ADLOP,,由射影定理可得:PAi=PD'PO,AD2=PD'OD.…(5分)又由切割線定理可得PA'PB^PC,.PB?PC=PD'PO,.D、B、C、。四點共圓,…(10分).NPDB=NPCO=乙OBC=NOOC,4PBD=NCOD,.△PBDsACOD,PDBD布=而’…(15分).BD'CD=PD'OD=AD1,.BDAD=CD又NBDA=NBDP+9Q°=ZODC+90°=ZADC,:ABDAsAADC,:.NBAD=NACD,:.AB是△/£>C的外接圓的切線,.如圖,點/為歹軸正半軸上一點,4,8兩點關(guān)于x軸對稱,過點4任作直線交拋物線y=1x2于尸,。兩點.(1)求證:NABP=NABQ;(2)若點4的坐標(biāo)為(0,1),且NP80=6O°,試求所有滿足條件的直線尸0的函數(shù)解析式.【解答】(1)證明:如圖,分別過點尸,。作y軸的垂線,垂足分別為C,D.設(shè)點4的坐標(biāo)為(0,1),則點8的坐標(biāo)為(0,-/).設(shè)直線尸0的函數(shù)解析式為》=京+3并設(shè)P,。的坐標(biāo)分別為(xp,yp)f(X0,?0).由(y=kx+t=27'3,27得石公—kx—t=0,于是XpX。=—13EPt=—^xpXq.十口BC于是 =yp+t=舞2+t2o-lXp2~lXpXQ—2 922, 、-Xp(Xp-XQ)-2=_生BD%+t3XQi+t3XQ^~XPXQ/q(xqF)XQ,PC又因為777;XpBC所以77_PCQDXQBDQD因為N8CP=N8O0=9O°,所以ABCPsABD。,故N48尸=N4B0;(2)解:設(shè)PC=a,DQ=b,不妨設(shè)a》b>0,由(1)可知ZABP=ZABQ=30°,BC=V3a,BD=V3b,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江汽車職業(yè)技術(shù)學(xué)院《深度報道研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 黑龍江林業(yè)職業(yè)技術(shù)學(xué)院《信息系統(tǒng)開發(fā)與應(yīng)用綜合專題》2023-2024學(xué)年第二學(xué)期期末試卷
- 河北醫(yī)科大學(xué)臨床學(xué)院《土地規(guī)劃設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶信息技術(shù)職業(yè)學(xué)院《環(huán)境與健康》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆維吾爾醫(yī)學(xué)??茖W(xué)?!缎l(wèi)生監(jiān)督學(xué)A》2023-2024學(xué)年第二學(xué)期期末試卷
- 晉中師范高等??茖W(xué)校《機(jī)械基礎(chǔ)與液壓傳動》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海中僑職業(yè)技術(shù)大學(xué)《中醫(yī)診斷學(xué)實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖南司法警官職業(yè)學(xué)院《機(jī)器視覺系統(tǒng)設(shè)計與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年醫(yī)學(xué)研究與試驗發(fā)展服務(wù)項目資金申請報告代可行性研究報告
- 連續(xù)剛構(gòu)橋畢業(yè)設(shè)計答辯
- 2025新疆西北興業(yè)城投集團(tuán)有限公司崗位招聘(12人)筆試參考題庫附帶答案詳解
- 餐廳供餐協(xié)議書范本
- 期中素養(yǎng)測評卷(試題)2024-2025學(xué)年五年級下冊科學(xué)教科版
- 供水公司筆試試題及答案
- 2024年寶雞市城投資產(chǎn)管理有限公司招聘真題
- 上海市華師大二附中2025屆高三第三次測評英語試卷含解析
- 安徽省糧油經(jīng)貿(mào)有限公司招聘筆試真題2024
- 2025年廣東省廣州市荔灣區(qū)中考一模道德與法治試卷(含答案)
- 2025年上海中考復(fù)習(xí)必背英語考綱詞匯表默寫(漢英互譯)
- 飼料與飼料學(xué)試題及答案
- 2025至2030中國磷石膏市場行情走勢監(jiān)測及未來發(fā)展展望報告
評論
0/150
提交評論