




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.下列函數(shù)中,最小正周期為,且圖象關于直線對稱的是A. B.C. D.2.設,則“”是“”的()條件A.必要不充分 B.充分不必要C.既不充分也不必要 D.充要3.已知定義域為R的偶函數(shù)在上是減函數(shù),且,則不等式的解集為()A. B.C. D.4.函數(shù)在單調(diào)遞增,且為奇函數(shù),若,則滿足的的取值范圍是A. B.C. D.5.已知集合,,則()A. B.C. D.6.如果兩個函數(shù)的圖象經(jīng)過平移后能夠重合,則稱這兩個函數(shù)為“互為生成”函數(shù),給出下列函數(shù):;;;,其中“互為生成”函數(shù)的是A. B.C. D.7.已知函數(shù),則的值是A. B.C. D.8.若函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)滿足的條件是A. B.C. D.9.已知點在外,則直線與圓的位置關系為()A.相交B.相切C.相離D.相交、相切、相離三種情況均有可能10.數(shù)列的前項的和為()A. B.C. D.11.若函數(shù)的零點與的零點之差的絕對值不超過0.25,則可以是A B.C. D.12.已知函數(shù),則的值為()A.1 B.2C.4 D.5二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知冪函數(shù)的圖象關于軸對稱,且在上單調(diào)遞減,則滿足的的取值范圍為________.14.已知,且,則的值為______15.圓柱的側(cè)面展開圖是邊長分別為的矩形,則圓柱的體積為_____________16.函數(shù)的最小值為______三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.筒車是我國古代發(fā)哪的一種水利灌溉工具,因其經(jīng)濟環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用.明朝科學家徐光啟在《農(nóng)政全書》中描繪了筒車的工作原理.如圖1是一個半徑為R(單位:米),有24個盛水筒的筒車,按逆時針方向勻速旋轉(zhuǎn),轉(zhuǎn)一周需要120秒,為了研究某個盛水筒P離水面高度h(單位,米)與時間t(單位:秒)的變化關系,建立如圖2所示的平面直角坐標系xOy.已知時P的初始位置為點(此時P裝滿水).(1)P從出發(fā)到開始倒水入槽需要用時40秒,求此刻P距離水面的高度(結果精確到0.1);(2)記與P相鄰的下一個盛水筒為Q,在簡車旋轉(zhuǎn)一周的過程中,求P與Q距離水面高度差的最大值(結果精確到0.1)參考數(shù)據(jù):,,,18.已知函數(shù)的一段圖像如圖所示.(1)求此函數(shù)的解析式;(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.19.已知函數(shù)(1)利用函數(shù)單調(diào)性的定義證明是單調(diào)遞增函數(shù);(2)若對任意,恒成立,求實數(shù)取值范圍20.已知函數(shù)的最小值為1.(1)求的值;(2)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間.21.求下列各式的值(1)(2)(3)(4)22.已知,(1)若,求a的值;(2)若函數(shù)在內(nèi)有且只有一個零點,求實數(shù)a的取值范圍
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】因為函數(shù)的最小正周期是,故先排除選項D;又對于選項C:,對于選項A:,故A、C均被排除,應選B.2、B【解析】根據(jù)充分條件與必要條件的概念,可直接得出結果.【詳解】若,則,所以“”是“”的充分條件;若,則或,所以“”不是“”的必要條件;因此,“”是“”的充分不必要條件.故選:B【點睛】本題主要考查充分不必要條件的判定,熟記概念即可,屬于基礎題型.3、A【解析】根據(jù)偶函數(shù)的性質(zhì)可得在上是增函數(shù),且.由此將不等式轉(zhuǎn)化為來求解得不等式的解集.【詳解】因為偶函數(shù)在上是減函數(shù),所以在上是增函數(shù),由題意知:不等式等價于,即,即或,解得:或.故選:A【點睛】本小題主要考查函數(shù)的奇偶性以及單調(diào)性,考查對數(shù)不等式的解法,屬于中檔題.4、D【解析】是奇函數(shù),故;又是增函數(shù),,即則有,解得,故選D.【點睛】解本題的關鍵是利用轉(zhuǎn)化化歸思想,結合奇函數(shù)的性質(zhì)將問題轉(zhuǎn)化為,再利用單調(diào)性繼續(xù)轉(zhuǎn)化為,從而求得正解.5、D【解析】利用對數(shù)函數(shù)與指數(shù)函數(shù)的性質(zhì)化簡集合,再根據(jù)集合交集的定義求解即可.【詳解】因為,,所以,,則,故選:D.6、D【解析】根據(jù)“互為生成”函數(shù)的定義,利用三角恒等變換化簡函數(shù)的解析式,再結合函數(shù)的圖象變換規(guī)律,得出結論【詳解】∵;;;,故把中的函數(shù)的圖象向右平移后再向下平移1個單位,可得中的函數(shù)圖象,故為“互為生成”函數(shù),故選D【點睛】本題主要主要考查新定義,三角恒等變換,函數(shù)的圖象變換規(guī)律,屬于中檔題7、B【解析】直接利用分段函數(shù),求解函數(shù)值即可【詳解】函數(shù),則f(1)+=log210++1=故選B【點睛】本題考查分段函數(shù)的應用,函數(shù)值的求法,考查計算能力8、A【解析】因為函數(shù)在區(qū)間上單調(diào)遞減,所以時,恒成立,即,故選A.9、A【解析】結合點與圓的位置關系,直線和圓的位置關系列不等式,由此確定正確答案.【詳解】是圓C:外一點,,圓心到直線的距離:,直線與圓相交故選:A10、C【解析】根據(jù)分組求和可得結果.【詳解】,故選:C11、A【解析】因為函數(shù)g(x)=4x+2x-2在R上連續(xù),且,,設函數(shù)的g(x)=4x+2x-2的零點為,根據(jù)零點存在性定理,有,則,所以,又因為f(x)=4x-1的零點為,函數(shù)f(x)=(x-1)2的零點為x=1,f(x)=ex-1的零點為,f(x)=ln(x-0.5)的零點為,符合為,所以選A考點:零點的概念,零點存在性定理12、D【解析】根據(jù)函數(shù)的定義域求函數(shù)值即可.【詳解】因為函數(shù),則,又,所以故選:D.【點睛】本題考查分段函數(shù)根據(jù)定義域求值域的問題,屬于基礎題.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】根據(jù)冪函數(shù)的單調(diào)性和奇偶性得到,代入不等式得到,根據(jù)函數(shù)的單調(diào)性解得答案.【詳解】冪函數(shù)在上單調(diào)遞減,故,解得.,故,,.當時,不關于軸對稱,舍去;當時,關于軸對稱,滿足;當時,不關于軸對稱,舍去;故,,函數(shù)在和上單調(diào)遞減,故或或,解得或.故答案為:14、【解析】根據(jù)同角的三角函數(shù)的關系,利用結合兩角和的余弦公式即可求出【詳解】,,,,,故答案為.【點睛】本題主要考查同角的三角函數(shù)的關系,兩角和的余弦公式,屬于中檔題.已知一個角的某一個三角函數(shù)值,便可運用基本關系式求出其它三角函數(shù)值,角的變換是解題的關鍵15、或【解析】有兩種形式的圓柱的展開圖,分別求出底面半徑和高,分別求出體積.【詳解】圓柱的側(cè)面展開圖是邊長為2a與a的矩形,當母線為a時,圓柱的底面半徑是,此時圓柱體積是;當母線為2a時,圓柱的底面半徑是,此時圓柱的體積是,綜上所求圓柱的體積是:或,故答案為或;本題考查圓柱的側(cè)面展開圖,圓柱的體積,容易疏忽一種情況,導致錯誤.16、【解析】根據(jù),并結合基本不等式“1”的用法求解即可.【詳解】解:因為,所以,當且僅當時,等號成立故函數(shù)的最小值為.故答案為:三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)m(2)m【解析】(1)根據(jù)題意P從出發(fā)到開始倒水入槽用時40秒,可知線段OA按逆時針方向旋轉(zhuǎn)了,由,可求圓的半徑,由題意可知以OA為終邊的角為,由此即可求出P距離水面的高度;(2)由題意可知P轉(zhuǎn)動的角速度為rad/s,易知P開始轉(zhuǎn)動t秒后距離水面的高度的解析式,設P,Q兩個盛水筒分別用點B,C表示,易知,點C相對于點B始終落后rad,求出Q距離水面的高度,可得則P,Q距離水面的高度差,再根據(jù)三角函數(shù)的性質(zhì),即可求出結果.【小問1詳解】解:由于筒車轉(zhuǎn)一周需要120秒,所以P從出發(fā)到開始倒水入槽的40秒,線段OA按逆時針方向旋轉(zhuǎn)了,因為A點坐標為,得,以OA為終邊的角為,所以P距離水面的高度m【小問2詳解】解:由于筒車轉(zhuǎn)一周需要120秒,可知P轉(zhuǎn)動的角速度為rad/s,又以OA為終邊的角為,則P開始轉(zhuǎn)動t秒后距離水面的高度,如圖,P,Q兩個盛水筒分別用點B,C表示,則,點C相對于點B始終落后rad,此時Q距離水面的高度則P,Q距離水面的高度差,利用,可得當或,即或時,最大值為所以,筒車旋轉(zhuǎn)一周的過程中,P與Q距離水面高度差的最大值約為m18、(1);(2)和.【解析】(1)根據(jù)三角函數(shù)的圖象求出A,ω,φ,即可確定函數(shù)的解析式;(2)根據(jù)函數(shù)的表達式,即可求函數(shù)f(x)的單調(diào)遞增區(qū)間;【詳解】(1)由函數(shù)的圖象可知A,,∴周期T=16,∵T16,∴ω,∴y=2sin(x+φ),∵函數(shù)的圖象經(jīng)過(2,﹣2),∴φ=2kπ,即φ,又|φ|<π,∴φ;∴函數(shù)的解析式為:y=2sin(x)(2)由已知得,得16k+2≤x≤16k+10,即函數(shù)的單調(diào)遞增區(qū)間為[16k+2,16k+10],k∈Z當k=﹣1時,為[﹣14,﹣6],當k=0時,為[2,10],∵x∈(﹣2π,2π),∴函數(shù)在(﹣2π,2π)上的遞增區(qū)間為(﹣2π,﹣6)和[2,2π)【點睛】本題主要考查三角函數(shù)解析式的求法,根據(jù)三角函數(shù)的圖象是解決本題的關鍵,要求熟練掌握三角函數(shù)的圖象和性質(zhì)19、(1)證明見解析(2)【解析】(1)利用單調(diào)性的定義,取值、作差、整理、定號、得結論,即可得證.(2)令,根據(jù)x的范圍,可得t的范圍,原式等價為,,只需即可,分別討論、和三種情況,根據(jù)二次函數(shù)的性質(zhì),計算求值,分析即可得答案.【小問1詳解】由已知可得的定義域為,任取,且,則,因為,,,所以,即,所以在上是單調(diào)遞增函數(shù)【小問2詳解】,令,則當時,,所以令,,則只需當,即時,在上單調(diào)遞增,所以,解得,與矛盾,舍去;當,即時,在上單調(diào)遞減,在上單調(diào)遞增,所以,解得;當即時,在上單調(diào)遞減,所以,解得,與矛盾,舍去綜上,實數(shù)的取值范圍是20、(1)3;(2)【解析】⑴將最小值代入函數(shù)中求解即可得到的值;⑵根據(jù)正弦函數(shù)的圖象和性質(zhì)求得函數(shù)的最小正周期和單調(diào)遞增區(qū)間解析:(1)由已知得,解得.(2)的最小正周期為.由,解得,.所以的遞增區(qū)間是.21、(1)0;(2);(3);(4).【解析】(1)(2)利用和角的余弦公式,差角的正弦結合誘導公式分別計算作答.(3)(4)逆用二倍角的正弦、余弦公式求解作答.【小問1詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 當代中國社會建設-第三講-從發(fā)展型政府到服務型政府
- 2024年紡織行業(yè)新產(chǎn)品開發(fā)試題及答案
- 2024年助理廣告師考試答題思路試題及答案
- 天津化學奧賽試題及答案
- 2024年提升設計表現(xiàn)力的策略國際商業(yè)美術設計師考試試題及答案
- 河南中職旅游試題及答案
- 刑法復試面試題及答案
- 水利事業(yè)面試題及答案
- 電工應用技術試題及答案
- 2024年設計文化傳播國際商業(yè)美術設計師考試試題及答案
- 2025屆鄂東南省級示范高中聯(lián)盟高考英語二模試卷含答案
- 2025購銷合同范本下載
- 2024年家政服務職業(yè)技能大賽家庭照護賽項決賽試理論題庫1000題
- 2025年四川省成都市成華區(qū)中考二診英語試題(含筆試答案無聽力音頻及原文)
- 2025勞動合同范本下載打印
- (四調(diào))武漢市2025屆高中畢業(yè)生四月調(diào)研考試 地理試卷(含答案)
- 管道試壓吹掃方案
- Unit 4 Clothes 單元整體(教學設計)-2024-2025學年人教精通版(2024)英語三年級下冊
- 大概念視角下的初中數(shù)學函數(shù)單元整體教學設計研究與實踐
- 《建筑裝飾設計收費標準》(2024年版)
- 腎上腺皮質(zhì)功能減退癥的護理
評論
0/150
提交評論