




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ProbabilityformsthebackboneofmanyimportantdatascienceconceptsfrominferentialstatisticstoBayesiannetworks.Itwouldnotbewrongtosaythatthejourneyofmasteringstatisticsbeginswithprobability.Thisskilltestwasconductedtohelpyouidentifyyourskilllevelinprobability.Atotalof1249peopleregisteredforthisskilltest.Thetestwasdesignedtotesttheconceptualknowledgeofprobability.Ifyouareoneofthosewhomissedoutonthisskilltest,herearethequestionsandsolutions.Youmissedontherealtimetest,butcanreadthisarticletofindouthowyoucouldhaveansweredcorrectly.HerearetheleaderboardrankingforalltheBasicsofProbabilityforDataScienceexplainedwithIntroductiontoConditionalProbabilityandBayestheoremfordatascienceLetAandBbeeventsonthesamesamplespace,withP(A)=0.6andP(B)0.7.CanthesetwoeventsbeSolution:ThesetwoeventscannotbedisjointbecauseP(A)+P(B)>1.P(A?B)=P(A)+P(B)-P(A?B).AneventisdisjointifP(A?B)=0.IfAandBaredisjointP(A?B)=0.6+0.7=AndSinceprobabilitycannotbegreaterthan1,thesetwomentionedeventscannotbeAlicehas2kidsandoneofthemisagirl.Whatistheprobabilitythattheotherchildisalsoagirl?YoucanassumethatthereareanequalnumberofmalesandfemalesintheSolution: esfortwokidscanbe{BB,BG,GB,Sinceitismentionedthatoneofthemisagirl,wecanremovetheBBoptionfromthesamplespace.Thereforethesamplespacehas3optionswhileonlyonefitsthesecondcondition.Thereforetheprobabilitythesecondchildwillbeagirltoois1/3.Afairsix-sideddieisrolledtwice.Whatistheprobabilityofgetting2ontherollandnotgetting4onthesecondroll?Solution:Thetwoeventsmentionedareindependent.Therollofthedieisindependentofthesecondroll.Thereforetheprobabilitiescanbedirectlymultiplied. 2)=1/6P(nosecond4)=ThereforeP(getting2andnosecond4)=1/6*5/6=P(A?Cc)willbeonlyP(A).P(onlyA)+P(C)willmakeitP(A?C).P(B?Ac?Cc)isP(onlyB)ThereforeP(A?C)andP(onlyB)willmakeP(A?B?C)Consideratetrahedraldieandrollittwice.Whatistheprobabilitythatthenumberontherollisstrictlyhigherthanthenumberonthesecondroll?Note:Atetrahedraldiehasonlyfoursides(1,2,3andSolution:Thereare6outof16possibilitieswhere rollisstrictlyhigherthanthesecondWhichofthefollowingoptionscannotbetheprobabilityofany-OnlyOnlyOnlyAandBandAandCProbabilityalwaysliewithin0toAnitarandomlypicks4cardsfromadeckof52-cardsandplacesthembackintothedeck(Anysetof4cardsisequallylikely).Then,Babitarandomlychooses8cardsoutofthesamedeck(Anysetof8cardsisequallylikely).Assumethatthechoiceof4cardsbyAnitaandthechoiceof8cardsbyBabitaareindependent.Whatistheprobabilitythatall4cardschosenbyAnitaareinthesetof8cardschosenbyBabita?48C4x48C4x48C8xNoneoftheaboveSolution:(A)Thetotalnumberofpossiblecombinationwouldbe52C4(Forselecting4cardsby*52C8(Forselecting8cardsbySince,the4cardsthatAnitachoosesisamongthe8cardswhichBabitahaschosen,thusthenumberofcombinationspossibleis52C4(Forselectingthe4cardsselectedbyAnita)*48C4(Forselectinganyother4cardsbyBabita,sincethe4cardsselectedbyAnitaarecommon)QuestionContextAplayerisrandomlydealtasequenceof13cardsfromadeckof52-cards.Allsequencesof13cardsareequallylikely.Inanequivalentmodel,thecardsarechosenanddealtoneatatime.Whenchoosingacard,thedealerisequallylikelytopickanyofthecardsthatremaininthedeck.Ifyoudealt13cards,whatistheprobabilitythatthe13thcardisaSolution:Sincewearenottoldanythingaboutthe12cardsthataredealt,theprobabilitythatthe13thcarddealtisaKing,isthesameastheprobabilitythatthecarddealt,orinfactanyparticularcarddealtisaKing,andthisequals:4/52Afairsix-sideddieisrolled6times.Whatistheprobabilityofgettingallesasunique?Solution:Forallthe estobeunique,wehave6choicesfortheturn,5forthesecondturn,4forthethirdturnandsoonThereforetheprobabilityifgettingall eswillbeequaltoAgroupof60studentsisrandomlysplitinto3classesofequalsize.Allpartitionsareequallylikely.JackandJillaretwostudentsbelongingtothatgroup.WhatistheprobabilitythatJackandJillwillendupinthesameclass?Solution:Assignadifferentnumbertoeachstudentfrom1to60.Numbers1to20goingroup1,21to40gotogroup2,41to60gotogroup3.Allpossiblepartitionsareobtainedwithequalprobabilitybyarandomassignmentifthesenumbers,itdoesn’tmatterwithwhichstudentswestart,sowearefreetostartbyassigningarandomnumbertoJackandthenweassignarandomnumbertoJill.AfterJackhasbeenassignedarandomnumberthereare59randomnumbersavailableforJilland19ofthesewillputherinthesamegroupasJack.ThereforetheprobabilityisWehavetwocoins,AandB.ForeachtossofcoinA,theprobabilityofgettingheadis1/2andforeachtossofcoinB,theprobabilityofgettingHeadsis1/3.Alltossesofthesamecoinareindependent.Weselectacoinatrandomandtossittillwegetahead.TheprobabilityofselectingcoinAis?andcoinBis3/4.Whatistheexpectednumberoftossestogettheheads?Solution:IfcoinAisselectedthenthenumberoftimesthecoinwouldbetossedforaguaranteedHeadsis2,similarly,forcoinBitis3.ThusthenumberoftimeswouldbeTosses=2*(1/4)[probabilityofselectingcoinA]+3*(3/4)[probabilityofselectingcoin=Supposealifeinsurancecompanysellsa$240,000oneyeartermlifeinsurancepolicytoa25-yearoldfemalefor$210.Theprobabilitythatthefemalesurvivestheyearis.999592.Findtheexpectedvalueofthispolicyfortheinsurancecompany.Solution:P(companylosesthemoney)=0.99592P(companydoesnotlosethemoney)=0.000408Theamountofmoneycompanylosesifitloses=240,000–210=239790Whilethemoneyitgainsis$210Expectedmoneythecompanywillhavetogive=239790*0.000408=97.8Expectmoneycompanygets=210.Thereforethevalue=210–98=Theabovestatementistrue.YouwouldneedtoknowthatP(A/B)=P(A?B)/P(B)P(Cc?A|A)=P(Cc?A?A)/P(A)=P(Cc?P(B|A?Cc)=P(A?B?Cc)/P(A?Multiplyingthethreewewouldget–P(A?B?Cc),hencetheequationsholdsWhenaneventAindependentofIfandonlyifIfandonlyifIfandonlyifP(A)=0or1Solution:(D)Theeventcanonlybeindependentofitselfwheneitherthereisnochanceofithappeningorwhenitiscertaintohappen.EventAandBisindependentwhenP(A?=P(A)*P(B).NowifB=A,P(A?A)=P(A)whenP(A)=0orSupposeyou’reinthefinalroundof“Let’smakeadeal”gameshowandyouaresupposedtochoosefromthreedoors–1,2&3.Oneofthethreedoorshasacarbehinditandothertwodoorshavegoats.Let’ssayyouchooseDoor1andthehostopensDoor3whichhasagoatbehindit.Toassuretheprobabilityofyourwin,whichofthefollowingoptionswouldyouchoose.SwitchyourRetainyourItdoesn’tmatterprobabilityofwinningorlosingisthesamewithorwithoutrevealingonedoorSolution:Iwould mendreadingthisarticleforadetaileddiscussionoftheMontyHall’sCross-fertilizingaredandawhiteflowerproducesredflowers25%ofthetime.Nowwecross-fertilizefivepairsofredandwhiteflowersandproducefiveoffspring.WhatistheprobabilitythattherearenoredflowerplantsinthefiveSolution:TheprobabilityofoffspringbeingRedis0.25,thustheprobabilityoftheoffspringnotbeingredis0.75.Sinceallthepairsareindependentofeachother,theprobabilitythatalltheoffspringsarenotredwouldbe(0.75)5=0.237.Youcanthinkofthisasabinomialwithallfailures.Aroulettewheelhas38slots–18red,18black,and2green.Youplayfivegamesandalwaysbetonredslots.Howmanygamescanyouexpecttowin?2.3684C)Solution:TheprobabilitythatitwouldbeRedinanyspinis18/38.Now,youareplayingthegame5timesandallthegamesareindependentofeachother.Thus,thenumberofgamesthatyoucanwinwouldbe5*(18/38)=2.3684Aroulettewheelhas38slots,18arered,18areblack,and2aregreen.Youplayfivegamesandalwaysbetonred.Whatistheprobabilitythatyouwinallthe5games?Solution:TheprobabilitythatitwouldbeRedinanyspinis18/38.Now,youareplayingfame5timesandallthegamesareindependentofeachother.Thus,theprobabilitythatyouwinallthegamesis(18/38)5=0.0238Sometestscoresfollowanormaldistributionwithameanof18andastandarddeviationof6.Whatproportionoftesttakershavescoredbetween18and24?NoneoftheaboveSolution:(C)SoherewewouldneedtocalculatetheZscoresforvaluebeing18and24.Wecaneasilyngthatbyputtingsamplemeanas18andpopulationmeanas18withσ=6andcalculatingZ.SimilarlywecancalculateZforsamplemeanas24.Z=(X-Thereforefor26asZ=(18-18)/6=0,lookingattheZtablewefind50%peoplehavescoresbelowFor24asZ=(24-18)/6=1,lookingattheZtablewefind84%peoplehavescoresbelow24.Thereforearound34%peoplehavescoresbetween18and24.Ajarcontains4marbles.3Red&1white.Twomarblesaredrawnwithreplacementaftereachdraw.Whatistheprobabilitythatthesamecolormarbleisdrawntwice?Solution:Ifthemarblesareofthesamecolorthenitwillbe3/4*3/4+1/4*1/4=WhichofthefollowingeventsismostAtleastone6,when6diceareAtleast2sixeswhen12diceareAtleast3sixeswhen18diceareAlltheabovehavesameprobabilitySolution:(A)Probabilityof‘6’turningupinarollofdiceisP(6)=(1/6)&P(6’)=(5/6).Thus,probabilityof∞Case1:(1/6)*(5/6)5=∞Case2:(1/6)2*(5/6)10=∞Case3:(1/6)3*(5/6)15=Thus,thehighestprobabilityisCaseSupposeyouwereinterviewedforatechnicalrole.50%ofthepeoplewhosatfortheinterviewreceivedthecallforsecondinterview.95%ofthepeoplewhogotacallforsecondinterviewfeltgoodabouttheirinterview.75%ofpeoplewhodidnotreceiveasecondcall,alsofeltgoodabouttheirinterview.Ifyoufeltgoodafteryour interview,whatistheprobabilitythatyouwillreceiveasecondinterviewcall?Solution:Let’sassumethereare100peoplethatgavethe roundofinterview.The50peoplegottheinterviewcallforthesecondround.Outofthis95%feltgoodabouttheirinterview,whichis47.5.50peopledidnotgetacallfortheinterview;outofwhich75%feltgoodabout,whichis37.5.Thus,thetotalnumberofpeoplethatfeltgoodaftergivingtheirinterviewis(37.5+47.5)85.Thus,outof85peoplewhofeltgood,only47.5gotthecallfornextround.Hence,theprobabilityofsuccessis(47.5/85)=0.558.AnothermoreacceptedwaytosolvethisproblemistheBaye’stheorem.Ileaveittoyoutocheckforyourself.Acoinofdiameter1-inchesisthrownonatablecoveredwithagridoflineseachtwoinchesapart.Whatistheprobabilitythatthecoinlandsinsideasquarewithouttouchinganyofthelinesofthegrid?Youcanassumethatthethrowinghasnoskillinthrowingthecoinandisthrowingitrandomly.Youcanassumethatthe throwinghasnoskillinthrowingthecoinandisthrowingitrandomly.Solution:Thinkaboutwhereallthecenterofthecoincanbewhenitlandson2inchesgridanditnottouchingthelinesofthegrid.Iftheyellowregionisa1inchsquareandtheoutsidesquareisof2inches.Ifthecenterfallsintheyellowregion,thecoinwillnottouchthegridline.Sincethetotalareais4andtheareaoftheyellowregionis1,theprobabilityis?.Thereareatotalof8bowsof2eachofgreen,yellow,orange&red.Inhowmanywayscanyouselect1bow?A)B)C)D)Solution:Youcanselectonebowoutoffourdifferentbows,soyoucanselectonebowinfourdifferentways.Considerthefollowingprobabilitydensityfunction:WhatistheprobabilityforX≤6i.e.P(x≤6)WhatistheprobabilityforX≤6i.e.Solution:Tocalculatetheareaofaparticularregionofaprobabilitydensityfunction,weneedtointegratethefunctionundertheboundsofthevaluesforwhichweneedtocalculatetheThereforeonintegratingthegivenfunctionfrom0to6,wegetInaclassof30students,approximaywhatistheprobabilitythattwoofthestudentshavetheirbirthdayonthesameday(definedbysamedayandmonth)(assumingit’snotaleapyear)?Forexample–Studentswithbirthday3rdJan1993and3rdJan1994wouldbeafavorableevent.Solution:Thetotalnumberofcombinationspossiblefornotwo stohavethesamebirthdayinaclassof30is30*(30-1)/2=435.Now,thereare365daysinayear(assumingit’snotaleapyear).Thus,theprobabilityofpeoplehavingadifferentbirthdaywouldbe364/365.Nowthereare870combinationspossible.Thus,theprobabilitythatnotwopeoplehavethesamebirthdayis(364/365)^435=0.303.Thus,theprobabilitythattwopeoplewouldhavetheirbirthdaysonthesamedatewouldbe1–0.303=0.696Ahmedisplayingalotterygamewherehemustpick2numbersfrom0to9followedbyanEnglishalphabet(from26-letters).Hemaychoosethesamenumberbothtimes.Ifhisticketmatchesthe2numbersand1letterdrawninorder,hewinsthegrandprizeandreceives$10405.Ifjusthislettermatchesbutoneorbothofthenumbersdonotmatch,hewins$100.Underanyothercircumstance,hewinsnothing.Thegamecostshim$5toplay.Supposehehaschosen04Rtoplay.Whatistheexpectednetprofitfromplayingthis$-$2.81C)$-$-Solution:ExpectedvalueinthisE(X)=P(grandprize)*(10405-5)+P(small)(100-5)+P(losing)*(-5)P(grandprize)=(1/10)*(1/10)*(1/26)P(small)=1/26-1/2600,thereasonweneedtodothisisweneedtoexcludethecasewherehegetstheletterrightandalsothenumbersrights.Hence,weneedtoremovethescenarioofgettingtheletterright.P(losing)=1-1/26-ThereforewecanfitinthevaluestogettheexpectedvalueasAssumeyousellsandwiches.70%peoplechooseegg,andtherestchoosechicken.Whatistheprobabilityofselling2eggsandwichestothenext3Solution:TheprobabilityofsellingEggsandwichis0.7&thatofachickensandwichis0.3.Now,theprobabilitythatnext3customerswouldorder2eggsandwichis0.7*0.7*0.30.147.Theycanordertheminanysequence,theprobabilitieswouldstillbetheQuestioncontext:29–HIVisstillaveryscarydiseasetoevengettestedfor.TheUSmilitarytestsitsrecruitsforHIVwhentheyarerecruited.TheyaretestedonthreeroundsofElisa(anHIVtest)beforetheyaretermedtobepositive.ThepriorprobabilityofanyonehavingHIVis0.00148.ThetruepositiverateforElisais93%andthetruenegativerateis99%.WhatistheprobabilitythatarecruithasHIV,givenhetestedpositiveonElisatest?ThepriorprobabilityofanyonehavingHIVis0.00148.ThetruepositiverateforElisais93%andthetruenegativerateis99%.Solution:
goingthroughtheBayesupdatingsectionof
articleforunderstandingoftheaboveWhatistheprobabilityofhavingHIV,givenhetestedpositiveonElisathesecondtimeaswell.ThepriorprobabilityofanyonehavingHIVis0.00148.ThetruepositiverateforElisais93%andthetruenegativerateis99%.Solution: mendgoingthroughtheBayesupdatingsectionofthisarticlefortheunderstandingoftheabovequestion.Supposeyou’replayingagameinwhichwetossafaircoinmultipletimes.Youhavealreadylostthricewhereyouguessedheadsbutatailsappeared.Whichofthebelowstatementswouldbecorrectinthiscase?YoushouldguessheadsagainsincethetailshasalreadyoccurredthriceanditsmorelikelyforheadstooccurnowYoushouldsaytailsbecauseguessingheadsisnotmakingyouYouhavethesameprobabilityofwinninginguessingeither,hencewhateveryouguessthereisjusta50-50chanceofwinningorlosingNoneoftheseSolution:(C)Thisisaclassicproblemofgambler’sfallacy/montecarlofallacy,wherefalselystartstothinkthattheresultsshouldevenoutinafewturns.Thegamblerstartstobelievethatifwehavereceived3heads,youshouldreceivea3tails.Thisishowevernottrue.Theresultswouldevenoutonlyininfinitenumberoftrials.TheinferenceusingthefrequentistapproachwillalwaysyieldthesameresultastheBayesianapproach.Solution:ThefrequentistApproachishighlydependentonhowwedefinethehypothesiswhileBayesianapproachhelpsusupdateourpriorbeliefs.Thereforethefrequentistapproachmightresultinanoppositeinferenceifwedeclarethehypothesisdifferently.Hencethetwoapproachesmightnotyieldthesameresults.Hospitalrecordsshowthat75%ofpatientssufferingfromadiseasedieduetothatdisease.Whatistheprobabilitythat4outofthe6randomlyselectedpatientsSolution:Thinkofthisasabinomialsincethereareonly2 es,eitherthepatientdiesorheHeren=6,andx=4.p=0.25(probabilityifliving(success))q=0.75(probabilityofP(X)=nCxpxqn-x=6C4(0.25)4(0.75)2=Thestudentsofaparticularclassweregiventwotestsforevaluation.Twenty-fivepercentoftheclassclearedboththetestsandforty-fivepercentofthestudentswereabletoclearthetest.Calculatethepercentageofstudentswhopassedthesecondtestgiventhattheywerealsoabletopassthe Solution:Thisisasimpleproblemofconditionalprobability.LetAbetheeventofpassinginBistheeventofpassinginthesecondtest.P(A?B)ispassinginboththeeventsP(passinginsecondgivenhepassedin one)=P(A?=0.25/0.45whichisaroundWhileitissaidthattheprobabilitiesofhavingaboyoragirlarethesame,let’sassumethattheactualprobabilityofhavingaboyisslightlyhigherat0.51.Supposeacoupleplanstohave3children.Whatistheprobabilitythatexactly2ofthemwillbeboys?Solution:Thinkofthisasabinomialdistributionwheregettingasuccessisaboyandfailureisagirl.Thereforeweneedtocalculatetheprobabilityofgetting2outofthreesuccesses.P(X)=nCxpxqn-x=3C2(0.51)2(0.49)1=Heightsof10year-olds,regardlessofgender,closelyfollowanormaldistributionwithmean55inchesandstandarddeviation6inches.Whichofthefollowingistrue?Wewouldexpectmorenumberof10year-oldstobeshorterthan55inchesthanthenumberofthemwhoaretallerthan55inchesRoughly95%of10year-oldsarebetween37and73inchesA10-year-oldwhois65inchestallwouldbeconsideredmoreunusualthana10-year-oldwhois45inchestallNoneoftheseSolution:(D)NoneoftheabovestatementsareAbout30%ofhumantwinsareidentical,andtherestarefraternal.Identicaltwinsarenecessarilythesamesex,halfaremalesandtheotherhalfarefemales.One-quarteroffraternaltwinsarebothmales,one-quarterbothfemale,andone-halfaremixed:onemale,onefemale.Youhave
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 東莞濱海灣新區(qū)管理委員會(huì)下屬事業(yè)單位招聘筆試真題2024
- 西藏自治區(qū)審計(jì)廳事業(yè)單位真題2024
- 項(xiàng)目十七裝載機(jī)工作裝置的檢測(cè)與修復(fù)任務(wù)1結(jié)構(gòu)件的拆裝與調(diào)整
- 斜二軸測(cè)圖不改變?cè)矬w與投影面的相對(duì)位置物體正放改變投射線
- 無側(cè)限抗壓強(qiáng)度試驗(yàn)趙鳳杰四川交通06課件
- 為了保證行車安全和必要的線路通過能力鐵路上每隔一定距離10
- 福建省平潭鴻新房地產(chǎn)開發(fā)有限公司招聘筆試題庫2025
- 浙江寧波市杭州灣大橋管理有限公司招聘筆試題庫2025
- 教育行業(yè)教育虛擬現(xiàn)實(shí)報(bào)告:VR技術(shù)在教育領(lǐng)域的創(chuàng)新應(yīng)用
- 2025年主題公園沉浸式體驗(yàn)項(xiàng)目開發(fā)與景區(qū)經(jīng)濟(jì)效益分析報(bào)告
- 智能教育技術(shù)驅(qū)動(dòng)的個(gè)性化學(xué)習(xí)路徑優(yōu)化研究
- 基層治理現(xiàn)代化視角下“楓橋經(jīng)驗(yàn)”的實(shí)踐路徑與創(chuàng)新研究
- 通信光纜租用協(xié)議合同書
- 2024-2025部編版小學(xué)道德與法治一年級(jí)下冊(cè)期末考試卷及答案(三套)
- 醫(yī)療救助資金動(dòng)態(tài)調(diào)整機(jī)制-洞察闡釋
- 帝國的興衰:修昔底德戰(zhàn)爭(zhēng)史學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 16J914-1 公用建筑衛(wèi)生間
- 學(xué)生社會(huì)勞動(dòng)實(shí)踐表
- TSG11-2020 鍋爐安全技術(shù)規(guī)程
- 【45精品】新蘇教版四年級(jí)音樂下冊(cè)教案全冊(cè)
- 測(cè)井工考試(高級(jí))測(cè)井工題庫(930題)
評(píng)論
0/150
提交評(píng)論