八年級(jí)數(shù)學(xué)上冊(cè)對(duì)稱軸圖形的相關(guān)知識(shí)點(diǎn)總結(jié)_第1頁(yè)
八年級(jí)數(shù)學(xué)上冊(cè)對(duì)稱軸圖形的相關(guān)知識(shí)點(diǎn)總結(jié)_第2頁(yè)
八年級(jí)數(shù)學(xué)上冊(cè)對(duì)稱軸圖形的相關(guān)知識(shí)點(diǎn)總結(jié)_第3頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余2頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Word———八年級(jí)數(shù)學(xué)上冊(cè)對(duì)稱軸圖形的相關(guān)知識(shí)點(diǎn)總結(jié)今日我為同學(xué)們整理共享的是關(guān)于人教版((八班級(jí))數(shù)學(xué))上冊(cè)對(duì)稱軸圖形的相關(guān)學(xué)問(wèn)點(diǎn)(總結(jié)),盼望可以關(guān)心到同學(xué)們更簡(jiǎn)單地學(xué)習(xí)圖形學(xué)問(wèn),接下來(lái)就讓我們一起來(lái)學(xué)習(xí)一下吧。

一、軸對(duì)稱圖形

1.把一個(gè)圖形沿著一條直線折疊,假如直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱圖形。這條直線就是它的對(duì)稱軸。這時(shí)我們也說(shuō)這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱。

2.把一個(gè)圖形沿著某一條直線折疊,假如它能與另一個(gè)圖形完全重合,那么就說(shuō)這兩個(gè)圖關(guān)于這條直線對(duì)稱。這條直線叫做對(duì)稱軸。折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)

3、軸對(duì)稱圖形和軸對(duì)稱的區(qū)分與聯(lián)系

4.軸對(duì)稱的性質(zhì)

①關(guān)于某直線對(duì)稱的兩個(gè)圖形是全等形。

②假如兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

③軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

④假如兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

二、線段的垂直平分線

1.經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

2.線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等

3.與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上

三、用坐標(biāo)表示軸對(duì)稱小結(jié)

1.在平面直角坐標(biāo)系中,關(guān)于x軸對(duì)稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).關(guān)于y軸對(duì)稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等.

2.三角形三條邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等

四、(等腰三角形)學(xué)問(wèn)點(diǎn)回顧

1.等腰三角形的性質(zhì)

①.等腰三角形的兩個(gè)底角相等。(等邊對(duì)等角)

②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合。(三線合一)

2、等腰三角形的判定:假如一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(等角對(duì)等邊)

五、(等邊三角形)學(xué)問(wèn)點(diǎn)回顧

1.等邊三角形的性質(zhì):等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于600。

2、等邊三角形的判定:

①三個(gè)角都相等的三角形是等邊三角形。

②有一個(gè)角是600的等腰三角形是等邊三角形。

3.在直角三角形中,假如一個(gè)銳角等于300,那么它所對(duì)的直角邊等于斜邊的一半。

①、等腰三角形的性質(zhì)

定理:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角)

推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。

推論2:等邊三角形的各個(gè)角都相等,并且每個(gè)角都等于60°。

②、等腰三角形的其他性質(zhì):

(1)等腰直角三角形的兩個(gè)底角相等且等于45°

(2)等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。

(3)等腰三角形的三邊關(guān)系:設(shè)腰長(zhǎng)為a,底邊長(zhǎng)為b,則

(4)等腰三角形的三角關(guān)系:設(shè)頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=

③、等腰三角形的判定

等腰三角形的判定定理及推論:

定理:假如一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊)。這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等。

推論1:三個(gè)角都相等的三角形是等邊三角形

推論2:有一個(gè)角是60°的等腰三角形是等邊三角形。

推論3:在直角三角形中,假如一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半。

④、三角形中的中位線

連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個(gè)新的三角形。

(2)要會(huì)區(qū)分三角形中線與中位線。

三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。

三角形中位線定理的作用:

位置關(guān)系:可以證明兩條直線平行。

數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。

常用結(jié)論:任一個(gè)三角形都有三條中位線,由此有:

結(jié)論1:三條中位線組成一個(gè)三角形,其周長(zhǎng)為原三角形周長(zhǎng)的一半。

結(jié)論2:三條中位線將原三角形分割成四個(gè)全等的三角形。

結(jié)論3:三條中位線將原三角形劃分出三個(gè)面積相等的平行四邊形。

結(jié)論4:三角形一條中線和與它相交的中位線相互平分。

結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對(duì)的三角形的頂角相等。

八班級(jí)數(shù)學(xué)上冊(cè)對(duì)稱軸圖形的相關(guān)學(xué)問(wèn)點(diǎn)總結(jié)相關(guān)(文章):

1.八班級(jí)上冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

2.初二數(shù)學(xué)上冊(cè)學(xué)問(wèn)點(diǎn)總結(jié)

3.人教版八班級(jí)數(shù)學(xué)上冊(cè)學(xué)問(wèn)點(diǎn)總結(jié)

4.八班級(jí)上冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

5.2022人教版八班級(jí)上冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

6

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論