2022年河南項(xiàng)城三高高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
2022年河南項(xiàng)城三高高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
2022年河南項(xiàng)城三高高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
2022年河南項(xiàng)城三高高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
2022年河南項(xiàng)城三高高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1世紀(jì)產(chǎn)生了著名的“”猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到.如圖是驗(yàn)證“”猜想的一個(gè)程序框圖,若輸入正整數(shù)的值為,則輸出的的值是( )ABCD2函數(shù)的部分圖像

2、大致為( )ABCD3已知復(fù)數(shù),則( )ABCD4已知純虛數(shù)滿足,其中為虛數(shù)單位,則實(shí)數(shù)等于( )AB1CD25已知變量,滿足不等式組,則的最小值為( )ABCD6設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),則使得成立的的取值范圍是( )ABCD7在中,角的對(duì)邊分別為,若則角的大小為()ABCD8設(shè)實(shí)數(shù)、滿足約束條件,則的最小值為( )A2B24C16D149一個(gè)四面體所有棱長(zhǎng)都是4,四個(gè)頂點(diǎn)在同一個(gè)球上,則球的表面積為( )ABCD10中國(guó)古代數(shù)學(xué)著作孫子算經(jīng)中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問(wèn)物幾何?”人們把此類題目稱為“中國(guó)剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記

3、為,例如現(xiàn)將該問(wèn)題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于( )ABCD11我國(guó)古代數(shù)學(xué)巨著九章算術(shù)中,有如下問(wèn)題:“今有女子善織,日自倍,五日織五尺,問(wèn)日織幾何?”這個(gè)問(wèn)題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問(wèn)這位女子每天分別織布多少?根據(jù)上述問(wèn)題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是( )A2B3C4D112已知函數(shù)的圖像上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在的圖像上,則實(shí)數(shù)的取值范圍是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13不等式對(duì)于定義域內(nèi)的任意恒成立,則的取值范圍為_.14定義

4、在R上的函數(shù)滿足:對(duì)任意的,都有;當(dāng)時(shí),則函數(shù)的解析式可以是_.15已知數(shù)列an的前n項(xiàng)和為Sn,向量(4,n),(Sn,n+3).若,則數(shù)列前2020項(xiàng)和為_16已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為_.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時(shí)點(diǎn)的坐標(biāo).18(12分)如圖,設(shè)A是由個(gè)實(shí)數(shù)組成的

5、n行n列的數(shù)表,其中aij (i,j=1,2,3,n)表示位于第i行第j列的實(shí)數(shù),且aij1,-1.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合對(duì)于,記ri (A)為A的第i行各數(shù)之積,cj (A)為A的第j列各數(shù)之積令a11a12a1na21a22a2nan1an2ann()請(qǐng)寫出一個(gè)AS(4,4),使得l(A)=0;()是否存在AS(9,9),使得l(A)=0?說(shuō)明理由;()給定正整數(shù)n,對(duì)于所有的AS(n,n),求l(A)的取值集合19(12分)已知函數(shù)f(x)xlnx,g(x)x2ax.(1)求函數(shù)f(x)在區(qū)間t,t1(t0)上的最小值m(t);(2)令h(x)g(x)f(x),A(x1

6、,h(x1),B(x2,h(x2)(x1x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足1,求實(shí)數(shù)a的取值范圍;(3)若x(0,1,使f(x)成立,求實(shí)數(shù)a的最大值20(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值21(12分)已知橢圓的焦距為2,且過(guò)點(diǎn)(1)求橢圓的方程;(2)設(shè)為的左焦點(diǎn),點(diǎn)為直線上任意一點(diǎn),過(guò)點(diǎn)作的垂線交于兩點(diǎn),()證明:平分線段(其中為坐標(biāo)原點(diǎn));()當(dāng)取最小值時(shí),求點(diǎn)的坐標(biāo)22(10分)已知分

7、別是的內(nèi)角的對(duì)邊,且()求()若,求的面積()在()的條件下,求的值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,考查計(jì)算能力,屬于基礎(chǔ)題.2A【解析】根據(jù)函數(shù)解析式,可知的定義域?yàn)?/p>

8、,通過(guò)定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項(xiàng),觀察選項(xiàng)的圖象,可知代入,解得,排除選項(xiàng),即可得出答案.【詳解】解:因?yàn)?,所以的定義域?yàn)?,則,為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除選項(xiàng),且當(dāng)時(shí),排除選項(xiàng),所以正確.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式識(shí)別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.3B【解析】分析:利用的恒等式,將分子、分母同時(shí)乘以 ,化簡(jiǎn)整理得 詳解: ,故選B點(diǎn)睛:復(fù)數(shù)問(wèn)題是高考數(shù)學(xué)中的??紗?wèn)題,屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問(wèn)題.4B【解析】先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是

9、純虛數(shù)求解出對(duì)應(yīng)的的值即可.【詳解】因?yàn)?,所以,又因?yàn)槭羌兲摂?shù),所以,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.5B【解析】先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.【點(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.6D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x(0,1)時(shí),g(x)0,lnx0,f(x)0;當(dāng)x(1,+)時(shí),g(x)0,f(x)0,(x2-1)f(x)0,(x2-

10、1)f(x)0,(x2-1)f(x)0.綜上所述,使得(x2-1)f(x)0成立的x的取值范圍是.本題選擇D選項(xiàng).點(diǎn)睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中某些數(shù)學(xué)問(wèn)題從表面上看似乎與函數(shù)的單調(diào)性無(wú)關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡(jiǎn)的作用因此對(duì)函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識(shí),并掌握好使用的技巧和方法,這是非常必要的根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧許多問(wèn)題,如果運(yùn)用這種思想去解決,往往能獲得簡(jiǎn)潔明快的思路,有著非凡的功效7A【解析】由正弦定理化簡(jiǎn)已知等式可得,

11、結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值【詳解】解:,由正弦定理可得:,故選A【點(diǎn)睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題8D【解析】做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),取得最小值,由,解得,即,所以的最小值為.故選:D.【點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.9A【解析】將正四面體補(bǔ)成正方體,通過(guò)正方體的對(duì)角線與球的半徑關(guān)系,求解即可【詳解】解:如圖,將正四面體補(bǔ)形成一個(gè)正方體,正四面體的外接球與正方體的外接球相同,四面

12、體所有棱長(zhǎng)都是4,正方體的棱長(zhǎng)為,設(shè)球的半徑為,則,解得,所以,故選:A【點(diǎn)睛】本題主要考查多面體外接球問(wèn)題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對(duì)角線,從而將問(wèn)題巧妙轉(zhuǎn)化,屬于中檔題10C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.11B【解析】將問(wèn)題轉(zhuǎn)化為等比數(shù)列問(wèn)題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問(wèn)題.【詳解】根據(jù)實(shí)際問(wèn)題可以轉(zhuǎn)化為等比數(shù)列問(wèn)題,在等比數(shù)列中,公比,前項(xiàng)和為,求的值因?yàn)?,解得,解得故選B【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問(wèn)題很有幫助.12A【解析】可將問(wèn)

13、題轉(zhuǎn)化,求直線關(guān)于直線的對(duì)稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點(diǎn),進(jìn)一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對(duì)稱直線為,當(dāng)時(shí),當(dāng)時(shí),則當(dāng)時(shí),單減,當(dāng)時(shí),單增;當(dāng)時(shí),當(dāng),,當(dāng)時(shí),單減,當(dāng)時(shí),單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當(dāng)與()相切時(shí),得,解得;當(dāng)與()相切時(shí),滿足,解得,結(jié)合圖像可知,即,故選:A【點(diǎn)睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點(diǎn)問(wèn)題,導(dǎo)數(shù)研究函數(shù)增減性,找準(zhǔn)臨界是解題的關(guān)鍵,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對(duì)于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡(jiǎn)后得出,即

14、可得出的取值范圍.【詳解】解:已知對(duì)于定義域內(nèi)的任意恒成立,即對(duì)于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,當(dāng)時(shí)取等號(hào),由可知,當(dāng)時(shí)取等號(hào),當(dāng)有解時(shí),令,則,在上單調(diào)遞增,又,使得,則,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問(wèn)題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計(jì)算能力.14(或,答案不唯一)【解析】由可得是奇函數(shù),再由時(shí),可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時(shí),知或等,答案不唯一.故答案為:(或,答案不唯一).【點(diǎn)睛】本題考查抽象函數(shù)的性質(zhì),涉及到由表達(dá)式確定函數(shù)奇偶性,是一道

15、開放性的題,難度不大.15【解析】由已知可得4Snn(n+3)0,可得Sn,n1時(shí),a1S11.當(dāng)n2時(shí),anSnSn1.可得:2().利用裂項(xiàng)求和方法即可得出.【詳解】,4Snn(n+3)0,Sn,n1時(shí),a1S11.當(dāng)n2時(shí),anSnSn1.,滿足上式,.2().數(shù)列前2020項(xiàng)和為2(1)2(1).故答案為:.【點(diǎn)睛】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.162【解析】根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,所以,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)

16、系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1);(2)最小值為,此時(shí)【解析】(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標(biāo)和直角坐標(biāo)相互轉(zhuǎn)化公式,求得曲線的直角坐標(biāo)方程.(2)設(shè)出的坐標(biāo),結(jié)合點(diǎn)到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時(shí)點(diǎn)的坐標(biāo).【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標(biāo)方程是(2)設(shè),的最小值就是點(diǎn)到直線的最小距離.設(shè)在時(shí),是最小值,此時(shí),所以,所求最小值為,此時(shí)【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,考查利用圓

17、錐曲線的參數(shù)求最值,屬于中檔題.18()答案見(jiàn)解析;()不存在,理由見(jiàn)解析;()【解析】()可取第一行都為-1,其余的都取1,即滿足題意;()用反證法證明:假設(shè)存在,得出矛盾,從而證明結(jié)論;()通過(guò)分析正確得出l(A)的表達(dá)式,以及從A0如何得到A1,A2,以此類推可得到Ak【詳解】()答案不唯一,如圖所示數(shù)表符合要求.()不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因?yàn)椋裕?,.,這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1.令.一方面,由于這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1,從而,另一方面,表示數(shù)表中所有元素之積(記這81個(gè)實(shí)數(shù)之積為m);也表示m,從而,相矛盾,從而不存在,使得.

18、()記這個(gè)實(shí)數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有,注意到,下面考慮,.,.,中-1的個(gè)數(shù),由知,上述2n個(gè)實(shí)數(shù)中,-1的個(gè)數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個(gè)數(shù)為2n-2k,所以,對(duì)數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿足:,其余,所以,所以,由k的任意性知,l(A)的取值集合為.【點(diǎn)睛】本題為數(shù)列的創(chuàng)新應(yīng)用題,考查數(shù)學(xué)分析與思考能力及推理求解能力,解題關(guān)鍵是讀懂題意,根據(jù)引入的概念與性質(zhì)進(jìn)行推理求解,屬于較難題.19(1)m(t)(2)a22.(

19、3)a22.【解析】(1)是研究在動(dòng)區(qū)間上的最值問(wèn)題,這類問(wèn)題的研究方法就是通過(guò)討論函數(shù)的極值點(diǎn)與所研究的區(qū)間的大小關(guān)系來(lái)進(jìn)行求解(2)注意到函數(shù)h(x)的圖像上任意不同兩點(diǎn)A,B連線的斜率總大于1,等價(jià)于h(x1)h(x2)x1x2(x1x2)恒成立,從而構(gòu)造函數(shù)F(x)h(x)x在(0,)上單調(diào)遞增,進(jìn)而等價(jià)于F(x)0在(0,)上恒成立來(lái)加以研究(3)用處理恒成立問(wèn)題來(lái)處理有解問(wèn)題,先分離變量轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)的最值,得到a,再利用導(dǎo)數(shù)求函數(shù)M(x)的最大值,這要用到二次求導(dǎo),才可確定函數(shù)單調(diào)性,進(jìn)而確定函數(shù)最值【詳解】(1) f(x)1,x0,令f(x)0,則x1.當(dāng)t1時(shí),f(x)在t

20、,t1上單調(diào)遞增,f(x)的最小值為f(t)tlnt;當(dāng)0t1時(shí),f(x)在區(qū)間(t,1)上為減函數(shù),在區(qū)間(1,t1)上為增函數(shù),f(x)的最小值為f(1)1.綜上,m(t)(2)h(x)x2(a1)xlnx,不妨取0 x1x2,則x1x20,則由,可得h(x1)h(x2)x1x2,變形得h(x1)x1h(x2)x2恒成立令F(x)h(x)xx2(a2)xlnx,x0,則F(x)x2(a2)xlnx在(0,)上單調(diào)遞增,故F(x)2x(a2)0在(0,)上恒成立,所以2xa2在(0,)上恒成立因?yàn)?x2,當(dāng)且僅當(dāng)x時(shí)取“”,所以a22.(3)因?yàn)閒(x),所以a(x1)2x2xlnx.因?yàn)閤

21、(0,1,則x1(1,2,所以x(0,1,使得a成立令M(x),則M(x).令y2x23xlnx1,則由y0 可得x或x1(舍)當(dāng)x時(shí),y0,則函數(shù)y2x23xlnx1在上單調(diào)遞減;當(dāng)x時(shí),y0,則函數(shù)y2x23xlnx1在上單調(diào)遞增所以yln40,所以M(x)0在x(0,1時(shí)恒成立,所以M(x)在(0,1上單調(diào)遞增所以只需aM(1),即a1.所以實(shí)數(shù)a的最大值為1.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合問(wèn)題,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算能力,屬于難題.20(1)見(jiàn)解析(2)【解析】(1)通過(guò)勾股定理得出,又,進(jìn)而可得平面,則可得到,問(wèn)題得證;(2)如圖,以為原點(diǎn),所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因?yàn)槠矫?,所以?又因?yàn)?,所以,因此,所以?因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點(diǎn),所在直線分別為軸

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論