




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知平面向量,則實數(shù)x的值等于( )A6B1CD2已知,則的最小值為( )ABCD3一物體作變
2、速直線運動,其曲線如圖所示,則該物體在間的運動路程為( )mA1BCD24中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、為頂點的多邊形為正五邊形,且,則( )ABCD5已知隨機變量服從正態(tài)分布,( )ABCD6已知復數(shù),則( )ABCD7設(shè)函數(shù),當時,則( )ABC1D8已知(為虛數(shù)單位,為的共軛復數(shù)),則復數(shù)在復平面內(nèi)對應的點在( ).A第一象限B第二象限C第三象限D(zhuǎn)第四象限9已知,滿足,且的最大值是最小值的4倍,則的值是( )A4BCD10函數(shù)的圖象在點處的切線為,則在軸上的截距為( )ABCD11已知集合,則( )ABCD12在中,則=( )
3、ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知實數(shù),滿足約束條件則的最大值為_14若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為_.15如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點依次為、以及、一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為_參考數(shù)據(jù):;)16如圖,在ABC中,AB4,D是AB的中點,E在邊AC上,AE2EC,CD與BE交于點O,若OBOC,則ABC面積的最大值為_三、解答題:共70分。解答
4、應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實數(shù)、滿足,求證:.18(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.()求的極坐標方程和曲線的參數(shù)方程;()求曲線的內(nèi)接矩形的周長的最大值.19(12分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標準方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,的斜率按某種排序能構(gòu)成等比數(shù)列?若能,求出的方程
5、,若不能,請說理由.20(12分)在平面直角坐標系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構(gòu)成邊長為2的等邊三角形(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、試判斷是否為定值,并說明理由21(12分)已知橢圓:,不與坐標軸垂直的直線與橢圓交于,兩點.()若線段的中點坐標為,求直線的方程;()若直線過點,點滿足(,分別為直線,的斜率),求的值.22(10分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設(shè),且滿足.(1)求;(2)若,求的最大值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個
6、選項中,只有一項是符合題目要求的。1A【解析】根據(jù)向量平行的坐標表示即可求解.【詳解】,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.2B【解析】 ,選B3C【解析】由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得所以物體在間的運動路程是故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算的能力,屬于中檔題.4A【解析】利用平面向量的概念、平面向量的加法、減法、數(shù)乘運算的幾何意義,便可解決問題【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則
7、等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題5B【解析】利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結(jié)果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎(chǔ)題.6B【解析】利用復數(shù)除法、加法運算,化簡求得,再求得【詳解】,故.故選:B【點睛】本小題主要考查復數(shù)的除法運算、加法運算,考查復數(shù)的模,屬于基礎(chǔ)題.7A【解析】由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值【詳解】,時,由題意,故選:A【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵8D【解析
8、】設(shè),由,得,利用復數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復數(shù)在復平面內(nèi)對應的點為,在第四象限.故選:D.【點睛】本題考查復數(shù)的幾何意義,涉及到共軛復數(shù)的定義、復數(shù)的模等知識,考查學生的基本計算能力,是一道容易題.9D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數(shù)取得最大值,最大值為3;當直線過點時,目標函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規(guī)劃.10A【解析】求出函數(shù)在處的導數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點睛】本題考查導數(shù)的
9、幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標,因此截距有正有負,本題屬于基礎(chǔ)題.11D【解析】先求出集合B,再與集合A求交集即可.【詳解】由已知,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.12B【解析】在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案【詳解】如下圖,在上分別取點,使得,則為平行四邊形,故,故答案為B. 【點睛】本題考查了平面向量的線性運算,考查了學生邏輯推理能力,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。131【解析】作出約束條件表示的可行域,轉(zhuǎn)化目標函數(shù)為,當目標函數(shù)經(jīng)過點時,直線
10、的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點的三角形及其內(nèi)部,轉(zhuǎn)化目標函數(shù)為當目標函數(shù)經(jīng)過點時,直線的截距最大此時取得最大值1故答案為:1【點睛】本題考查了線性規(guī)劃問題,考查了學生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算能力,屬于基礎(chǔ)題.14【解析】二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.點Q到底面的距離與到點P的距離之比為正常數(shù)k,則,動點Q的軌跡是拋物線,即則.二面角的平面角的余弦值
11、為解得:().故答案為:.【點睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.15【解析】根據(jù)空間位置關(guān)系,將平面旋轉(zhuǎn)后使得各點在同一平面內(nèi),結(jié)合角的關(guān)系即可求得兩點間距離的三角函數(shù)表達式.根據(jù)所給參考數(shù)據(jù)即可得解.【詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和.將平面繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉(zhuǎn)至與平面共面的位置,將繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導公式可得,所以最短距離為,故答案為:.【點睛】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面
12、內(nèi)求解的方法,三角函數(shù)誘導公式的應用,綜合性強,屬于難題.16【解析】先根據(jù)點共線得到,從而得到O的軌跡為阿氏圓,結(jié)合三角形和三角形的面積關(guān)系可求.【詳解】設(shè)B,O,E共線,則,解得,從而O為CD中點,故.在BOD中,BD2,易知O的軌跡為阿氏圓,其半徑,故故答案為:.【點睛】本題主要考查三角形的面積問題,把所求面積進行轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2)見解析.【解析】(1)分、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對值三角不等式可求得函數(shù)的最小值為,進而可得出,再將代數(shù)式與相乘,利
13、用基本不等式求得的最小值,進而可證得結(jié)論成立.【詳解】(1)當時,由,得,即,解得,此時;當時,由,得,即,解得,此時;當時,由,得,即,解得,此時.綜上所述,不等式的解集為;(2),當且僅當時取等號,所以,.所以,當且僅當,即,時等號成立,所以.所以,即.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式成立,涉及絕對值三角不等式的應用,考查運算求解能力,屬于中等題.18()曲線的參數(shù)方程為:(為參數(shù));的極坐標方程為;()16.【解析】(I)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程、極坐標方程和直角坐標方程之間進行轉(zhuǎn)換;(II)利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應
14、用,即可求出結(jié)果.【詳解】() 由題意:曲線的直角坐標方程為:,所以曲線的參數(shù)方程為(為參數(shù)),因為直線的直角坐標方程為:,又因曲線的左焦點為,將其代入中,得到,所以的極坐標方程為 .()設(shè)橢圓的內(nèi)接矩形的頂點為,所以橢圓的內(nèi)接矩形的周長為:,所以當時,即時,橢圓的內(nèi)接矩形的周長取得最大值16 .【點睛】本題考查了曲線的參數(shù)方程,極坐標方程與普通方程間的互化,三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應用,極徑的應用,考查學生的求解運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.19(1);(2)不能,理由見解析【解析】(1)設(shè),則,由此即可求出橢圓方程;(2)設(shè)直線的方程為,聯(lián)立直線與橢圓的方程可求得,
15、則直線斜率為,設(shè)其方程為,聯(lián)立直線與橢圓方程,結(jié)合韋達定理可得關(guān)于對稱,可求得,假設(shè)存在直線滿足題意,設(shè),可得,由此可得答案【詳解】解:(1)設(shè),則,所以橢圓方程為;(2)設(shè)直線的方程為,與聯(lián)立得,因為兩直線的傾斜角互補,所以直線斜率為,設(shè)直線的方程為,聯(lián)立整理得,所以關(guān)于對稱,由正弦定理得,因為,所以,由上得,假設(shè)存在直線滿足題意,設(shè),按某種排列成等比數(shù)列,設(shè)公比為,則,所以,則此時直線與平行或重合,與題意不符,所以不存在滿足題意的直線【點睛】本題主要考查直線與橢圓的位置關(guān)系,考查計算能力與推理能力,屬于難題20(1)(2)為定值【解析】(1)根據(jù)題意,得出,從而得出橢圓的標準方程(2)根據(jù)
16、題意設(shè)直線方程:,因為直線與橢圓相切,這有一個交點,聯(lián)立直線與橢圓方程得,則,解得把和代入,得和 ,的表達式,比即可得出為定值【詳解】解:(1)依題意,所以橢圓的標準方程為(2)為定值.因為直線分別與直線和直線相交,所以,直線一定存在斜率設(shè)直線:,由得,由,得 把代入,得,把代入,得,又因為,所以,由式,得, 把式代入式,得,即為定值【點睛】本題考查橢圓的定義、方程、和性質(zhì),主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉(zhuǎn)化思想,是中檔題.21()()【解析】()根據(jù)點差法,即可求得直線的斜率,則方程即可求得;()設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達定理,根據(jù),即可求得參數(shù)的值.【詳解】(1)設(shè),則兩式相減,可得.(*)因為線段的中點坐標為,所以,.代入(*)式,得.所以直線的斜率.所以直線的方程為,即.()設(shè)直線:(),聯(lián)立整理得.所以,解得.所以,.所以,所以.所以.因為,所以.【點睛】本題考查中點弦問題的點差法求解,以及利用代數(shù)與幾何關(guān)系求直線方程,涉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高級網(wǎng)絡(luò)測試題及答案
- 按揭貸款協(xié)議書
- 如何通過數(shù)據(jù)分析提升品牌策略計劃
- 行政管理公共關(guān)系活動策劃題及答案
- 畫板采購合同
- 采購信息整合協(xié)議
- 策劃機構(gòu)外包合同
- 車輛維護及出險聲明協(xié)議
- 股權(quán)融資協(xié)議
- 公共關(guān)系溝通技巧試題及答案
- 2025-2030年中國服務器行業(yè)市場深度調(diào)研及前景趨勢與投資研究報告
- 江西省豐城市第九中學2024-2025學年高二下學期期中考試英語試卷(含答案無聽力原文及音頻)
- 康復技術(shù)考試試題及答案
- 2025年新工人入場安全培訓考試試題附完整答案(奪冠)
- 【MOOC】線性代數(shù)-浙江大學 中國大學慕課MOOC答案
- 江蘇省啟東市高中數(shù)學 第二章 平面向量 第6課時 2.3.2 向量的坐標表示(1)教案 蘇教版必修4
- 微觀經(jīng)濟學課件第二章(高鴻業(yè))
- 醫(yī)院科室6S管理制度
- 病歷書寫基本規(guī)范12021病歷書寫規(guī)范試題.doc
- 《山東省自然科學基金資助項目年度進展報告》
- 發(fā)展與教育心理學個別差異
評論
0/150
提交評論