數(shù)學(xué)及應(yīng)用數(shù)學(xué)專業(yè)外文翻譯多元函數(shù)的極值_第1頁
數(shù)學(xué)及應(yīng)用數(shù)學(xué)專業(yè)外文翻譯多元函數(shù)的極值_第2頁
數(shù)學(xué)及應(yīng)用數(shù)學(xué)專業(yè)外文翻譯多元函數(shù)的極值_第3頁
數(shù)學(xué)及應(yīng)用數(shù)學(xué)專業(yè)外文翻譯多元函數(shù)的極值_第4頁
數(shù)學(xué)及應(yīng)用數(shù)學(xué)專業(yè)外文翻譯多元函數(shù)的極值_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、word外文原文EXTREME VALUES OF FUNCTIONS OF SEVERAL REAL VARIABLES1. Stationary PointsDefinition 1.1 Let and . The point a is said to be: (1) a local maximum iffor all points sufficiently close to ;(2) a local minimum iffor all points sufficiently close to ;(3) a global (or absolute) maximum iffor all po

2、ints ;(4) a global (or absolute) minimum iffor all points ;(5) a local or global extremum if it is a local or global maximum or minimum.Definition 1.2 Let and . The point a is said to be critical or stationary point if and a singular point if does not exist at .Fact 1.3 Let and .If has a local or gl

3、obal extremum at the point , then must be either:(1) a critical point of , or(2) a singular point of , or(3) a boundary point of .Fact 1.4 If is a continuous function on a closed bounded set then is bounded and attains its bounds.Definition 1.5 A critical point which is neither a local maximum nor m

4、inimum is called a saddle point.Fact 1.6 A critical point is a saddle point if and only if there are arbitrarily small values of for which takes both positive and negative values.Definition 1.7 If is a function of two variables such that all second order partial derivatives exist at the point , then

5、 the Hessian matrix of at is the matrixwhere the derivatives are evaluated at.If is a function of three variables such that all second order partial derivatives exist at the point , then the Hessian of f at is the matrixwhere the derivatives are evaluated at.Definition 1.8 Let be an matrix and, for

6、each ,let be the matrix formed from the first rows and columns of .The determinants det(),are called the leading minors of Theorem 1.9(The Leading Minor Test). Suppose that is a sufficiently smooth function of two variables with a critical point atand H the Hessian of at.If , then is:(1) a local max

7、imum if 0det(H1) = fxx and 0det(H)=; (2) a local minimum if 0det(H1) = fxx and 0det(H1), 0det(H3);(2) a local minimum if 0det(H1), 0det(H3);(3) a saddle point if neither of the above hold.where the partial derivatives are evaluated at.Key Points.A continuous function on a closed bounded set is bound

8、ed and achieves its bounds.To find the extreme values of a function on a closed bounded set it is necessary to consider the value of the function at stationary points(), singular points (does not exist) and boundary points(points on the edge of the set).Stationary points can be classified as local m

9、axim , local minim or saddle points.If The Leading Minor Test 1.9 is not applicable, the stationary point must be classified by directly applying Definition 1.1 and Fact 1.6. For example in the two variable case, if has a stationary point at ,we consider the sign offor arbitrarily small, positive an

10、d negative values of and (that are not both zero). In each case, if det(H)= 0, then can be either a local extremum or a saddle point.Example. Find and classify the stationary points of the following functions: (1) (2) Solution. (1) ,soijkCritical points occur when ,i.e. when(1) (2) (3) Using equatio

11、ns (2) and (3) to eliminate y and z from (1), we see thator ,giving , and .Hence we have three stationary points: , and . Since, and ,the Hessian matrix is At ,which has leading minors 0,And det .By the Leading Minor Test, then, is a local minimum. At ,which has leading minors 0,And det .By the Lead

12、ing Minor Test, then, is also a local minimum.At , the Hessian isSince det, we can apply the leading minor test which tells us that this is a saddle point since the first leading minor is 0. An alternative method is as follows. In this case we consider the value of the expression,for arbitrarily sma

13、ll values of h, k and l. But for very small h, k and l, cubic terms and above are negligible in comparison to quadratic and linear terms, so that.If h, k and l are all positive, . However, if and and ,then .Hence close to ,both increases and decreases, so is a saddle point.(2) soij.Stationary points

14、 occur when ,i.e. at .Let us classify this stationary point without considering the Leading Minor Test (in this case the Hessian has determinant 0 at so the test is not applicable).LetCompleting the square we see that So for any arbitrarily small values of h and k, that are not both 0, and we see th

15、at f has a local maximum at .2. Constrained Extrema and Lagrange MultipliersDefinition 2.1 Let f and g be functions of n variables. An extreme value of f(x) subject to the condition g(x) = 0, is called a constrained extreme value and g(x) = 0 is called the constraint.Definition 2.2 If is a function

16、of n variables, the Lagrangian function of f subject to the constraint is the function of n+1 variableswhere is known as the Lagrange multiplier. The Lagrangian function of f subject to the k constraints , is the function with k Lagrange multipliers, Key Points.To find the extreme values of f subjec

17、t to the constraint g(x) = 0: (1) calculate, remembering that it is a function of the n+1 variables and (2) find values of such that (you do not have to explicitly find the corresponding values of ): (3) evaluate f at these points to find the required extrema.Note that the equation is equivalent to

18、the equations,and So, in the two variable case, we have Lagranian function and are solving the equations:, , and .With more than one constraint we solve the equation.Theorem 2.3 Let and be a point on the curve C, with equation g(x,y) = 0, at which f restricted to C has a local extremum.Suppose that

19、both and have continuous partial derivatives near to and that is not an end point of and that . Then there is some such that is a critical point of the Lagrangian Function.Proof. Sketch only. Since P is not an end point and ,has a tangent at with normal .If is not parallel to at , then it has non-ze

20、ro projection along this tangent at .But then f increases and decreases away from along ,so is not an extremum. Henceand are parallel and there is somesuch that and the result follows.Example. Find the rectangular box with the largest volume that fits inside the ellipsoid ,given that it sides are pa

21、rallel to the axes.Solution. Clearly the box will have the greatest volume if each of its corners touch the ellipse. Let one corner of the box be corner (x, y, z) in the positive octant, then the box has corners (x,y,z) and its volume is V= 8xyz.We want to maximize V given that . (Note that since th

22、e constraint surface is bounded a max/min does exist). The Lagrangian isand this has critical points when , i.e. when (Note that will always be the constraint equation.) As we want to maximize V we can assume that so that .)Hence, eliminating , we getso that and But then so or ,which implies that an

23、d (they are all positive by assumption). So L has only one stationary point (for some value of , which we could work out if we wanted to). Since it is the only stationary point it must the required max and the max volume is.中文譯文 多元函數(shù)的極值1. 穩(wěn)定點定義1.1 使并且. 對于任意一點有以下定義: (1)如果對于所有充分地接近時,那么是一個局部極大值;(2)如果對于

24、所有充分地接近時,那么是一個局部極小值;(3)如果對于所有點成立,那么是一個全局極大值或絕對極大值;(4) 如果對于所有點成立,那么是一個全局極小值或絕對極小值; (5) 局部極大小值統(tǒng)稱為局部極值;全局極大小值統(tǒng)稱為全局極值.定義 1.2 使并且.對于任意一點,如果,并且對于任意奇異點都不存在,那么稱是一個關(guān)鍵點或穩(wěn)定點.結(jié)論 1.3 使并且.如果有局部極值或全局極值對于一點, 那么 一定是:(1)函數(shù)的一個關(guān)鍵點, 或者(2)函數(shù)的一個奇異點, 或者 (3)定義域的一個邊界點.結(jié)論 1.4 如果函數(shù)是一個在閉區(qū)間上的連續(xù)函數(shù),那么在區(qū)間上有邊界并且可以取到邊界值.定義 1.5 對于任一個關(guān)

25、鍵點,當(dāng)既不是局部極大值也不是局部極小值時,叫做函數(shù)的鞍點.結(jié)論 1.6 對于一個關(guān)鍵點是鞍點當(dāng)且僅當(dāng)任意小時,對于函數(shù)取正值和負(fù)值.定義 1.7 如果 是二元函數(shù),并且在點處所有二階偏導(dǎo)數(shù)都存在,那么那么根據(jù)函數(shù)在點處導(dǎo)數(shù),有在點處的Hessian矩陣為:.推廣:如果 是三元函數(shù),并且在點處所有二階偏導(dǎo)數(shù)都存在,那么根據(jù)函數(shù)在點處導(dǎo)數(shù),有在點處的Hessian矩陣為:.定義 1.8 矩陣是 階矩陣,并且對于每一個都有,從矩陣中選取左上端的行和列,令其為階的矩陣.那么行列式det(),叫做矩陣的順序主子式. 定理 1.9 假設(shè)是一個充分光滑的二元函數(shù),且在點處穩(wěn)定,其Hessian 矩陣為H

26、.如果,那么根據(jù)偏導(dǎo)數(shù)判定點是:(1) 一個局部極大值點, 如果0det(H1) = fxx并且0det(H)=; (2) 一個局部極小值點, 如果0det(H1) = fxx并且0det(H1), 0det(H3)時;(2) 一個局部極小值點, 如果當(dāng)0det(H1), 0det(H3)時;(3) 一個鞍點,如果點既不是局部極大值點也不是局部極小值點. 在不同的情況下 ,當(dāng)det(H)= 0時, 點是一個局部極值點,或者是一個鞍點.關(guān)鍵點.在有界閉集上的連續(xù)函數(shù)有邊界,并且可以取到其邊界值.當(dāng)確定函數(shù)在有界閉集上的極值時,必須考慮函數(shù)在穩(wěn)定點(即 時), 奇異點 (當(dāng) 不存在時) 和邊界點(

27、點在集合的邊緣)處的函數(shù)值.穩(wěn)定點可以分為局部極大值點、局部極小值點或鞍點. 對于穩(wěn)定點,當(dāng)應(yīng)用定理 1.9 不能分類時,可依據(jù)定義1.1和結(jié)論1.6對穩(wěn)定點進行直接分類.例如,在二元情況下,如果 在點 處的點是穩(wěn)定點,我們可以考慮函數(shù)的符號,當(dāng) 和 任意小( 和 可為正值和負(fù)值,但不同時為0)時. 例. 確定以下函數(shù)的穩(wěn)定點并說明是哪一類點: (1) (2) 解. (1) ,soijk當(dāng)時有穩(wěn)定點,也就是說, 當(dāng) (1) (2) (3) 時,將方程(2)和方程(3)帶入到方程(1)可以消去變量y和z, 由此可以得到即,得,和.因此我們可以得到函數(shù)的三個穩(wěn)定點:,和. 又因為,和,那么Hess

28、ian矩陣為 在點處, 那么順序主子式 0,并且行列式.根據(jù)主子式判定方法,那么點是一個局部極小值點. 在點處, 那么順序主子式 0,并且行列式.根據(jù)主子式判定方法,那么點也是一個極小值點. 在點處,Hessian矩陣為因此det,根據(jù)主子式判定方法,第一主子式為0,由此我們可以知道該點是一個鞍點. 下面是另一種計算方法,在這種情況下,我們考慮現(xiàn)在下面函數(shù)表達(dá)式,的值,對于任意h, k和l無限小時. 擔(dān)當(dāng)h, k和l非常小時, 三次及三次以上方程相對線性二次方程時可忽略不計,那么原方程可為.當(dāng)h, k和l 都為正時,.然而, 當(dāng)、和,那么.因此當(dāng)接近時,同時增加或者同時減少, 所以 是一個鞍點.(2) soij.當(dāng)時有穩(wěn)定點,也就是說, 當(dāng)在時. 現(xiàn)在我們在不考慮主子式判定方法的情況下為該穩(wěn)定點進行分類因為在時Hessian矩陣的行列式為0,所以該判定方法在此刻無法應(yīng)用.令配成完全平方的形式為所以對h和k為任意小時h和k都不為0,有,因此我們可以確定函數(shù)f 在點處有局部極大值.2. 條件極值和Lagrange乘數(shù)法定義 2.1 函數(shù)f和函數(shù)g都是n元函數(shù).對于限制在條件g(x) = 0下的函數(shù)f (x)的極值叫做

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論