




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、高一數(shù)學(xué)知識點(diǎn)第一章、集合與函數(shù)概念§、集合1、 把研究的對象統(tǒng)稱為元素,把一些元素組成的總體叫做集合。集合三要素:確定性、互異性、無序性。2、 只要構(gòu)成兩個集合的元素是一樣的,就稱這兩個集合相等。3、 常見集合:正整數(shù)集合:或,整數(shù)集合:,有理數(shù)集合:,實(shí)數(shù)集合:.4、集合的表示方法:列舉法、描述法.§、集合間的基本關(guān)系1、 一般地,對于兩個集合A、B,如果集合A中任意一個元素都是集合B中的元素,則稱集合A是集合B的子集。記作.2、 如果集合,但存在元素,且,則稱集合A是集合B的真子集.記作:AB.3、 把不含任何元素的集合叫做空集.記作:.并規(guī)定:空集合是任何集合的子集
2、.4、 如果集合A中含有n個元素,則集合A有個子集.§、集合間的基本運(yùn)算1、 一般地,由所有屬于集合A或集合B的元素組成的集合,稱為集合A與B的并集.記作:.2、 一般地,由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集.記作:.3、全集、補(bǔ)集?§、函數(shù)的概念1、 設(shè)A、B是非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系,使對于集合A中的任意一個數(shù),在集合B中都有惟一確定的數(shù)和它對應(yīng),那么就稱為集合A到集合B的一個函數(shù),記作:.2、 一個函數(shù)的構(gòu)成要素為:定義域、對應(yīng)關(guān)系、值域.如果兩個函數(shù)的定義域相同,并且對應(yīng)關(guān)系完全一致,則稱這兩個函數(shù)相等.§、函數(shù)的表
3、示法1、 函數(shù)的三種表示方法:解析法、圖象法、列表法.§、單調(diào)性與最大(小)值1、 注意函數(shù)單調(diào)性證明的一般格式: 解:設(shè)且,則:=§、奇偶性1、 一般地,如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就稱函數(shù)為偶函數(shù).偶函數(shù)圖象關(guān)于軸對稱.2、 一般地,如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就稱函數(shù)為奇函數(shù).奇函數(shù)圖象關(guān)于原點(diǎn)對稱.第二章、基本初等函數(shù)()§、指數(shù)與指數(shù)冪的運(yùn)算1、 一般地,如果,那么叫做 的次方根。其中.2、 當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時,.3、 我們規(guī)定:;4、 運(yùn)算性質(zhì):;.§、指數(shù)函數(shù)及其性質(zhì)1、 記住圖象:§、對數(shù)與對數(shù)
4、運(yùn)算1、;2、.3、,.4、當(dāng)時:;.5、換底公式:.6、.§2.2.2、對數(shù)函數(shù)及其性質(zhì)1、 記住圖象:§2.3、冪函數(shù)1、幾種冪函數(shù)的圖象:第三章、函數(shù)的應(yīng)用§、方程的根與函數(shù)的零點(diǎn)1、方程有實(shí)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).2、 性質(zhì):如果函數(shù)在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有,那么,函數(shù)在區(qū)間內(nèi)有零點(diǎn),即存在,使得,這個也就是方程的根.§、用二分法求方程的近似解1、掌握二分法.§、幾類不同增長的函數(shù)模型§、函數(shù)模型的應(yīng)用舉例1、解決問題的常規(guī)方法:先畫散點(diǎn)圖,再用適當(dāng)?shù)暮瘮?shù)擬合,最后檢驗(yàn).必修2數(shù)學(xué)知識點(diǎn)1、空間幾
5、何體的結(jié)構(gòu)常見的多面體有:棱柱、棱錐、棱臺;常見的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺、球。棱柱:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱。棱臺:用一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分,這樣的多面體叫做棱臺。2、空間幾何體的三視圖和直觀圖把光由一點(diǎn)向外散射形成的投影叫中心投影,中心投影的投影線交于一點(diǎn);把在一束平行光線照射下的投影叫平行投影,平行投影的投影線是平行的。3、空間幾何體的表面積與體積圓柱側(cè)面積;圓錐側(cè)面積:圓臺側(cè)面積:體積公式:;球的表面積和體積:.第二章:點(diǎn)、直線、平面之間的位置關(guān)系1、公理1:如果一條直
6、線上兩點(diǎn)在一個平面內(nèi),那么這條直線在此平面內(nèi)。2、公理2:過不在一條直線上的三點(diǎn),有且只有一個平面。3、公理3:如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。4、公理4:平行于同一條直線的兩條直線平行.5、定理:空間中如果兩個角的兩邊分別對應(yīng)平行,那么這兩個角相等或互補(bǔ)。6、線線位置關(guān)系:平行、相交、異面。7、線面位置關(guān)系:直線在平面內(nèi)、直線和平面平行、直線和平面相交。8、面面位置關(guān)系:平行、相交。9、線面平行:判定:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。性質(zhì):一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。10、面面
7、平行:判定:一個平面內(nèi)的兩條相交直線與另一個平面平行,則這兩個平面平行。性質(zhì):如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。11、線面垂直:定義:如果一條直線垂直于一個平面內(nèi)的任意一條直線,那么就說這條直線和這個平面垂直。判定:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。性質(zhì):垂直于同一個平面的兩條直線平行。12、面面垂直:定義:兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直。判定:一個平面經(jīng)過另一個平面的一條垂線,則這兩個平面垂直。性質(zhì):兩個平面互相垂直,則一個平面內(nèi)垂直于交線的直線垂直于另一個平面。第三章:直線與方程1、傾斜角與斜率:2
8、、直線方程:點(diǎn)斜式:斜截式:兩點(diǎn)式:一般式:3、對于直線:有:;和相交;和重合;.4、對于直線:有:;和相交;和重合;.5、兩點(diǎn)間距離公式:6、點(diǎn)到直線距離公式:第四章:圓與方程1、圓的方程:標(biāo)準(zhǔn)方程:一般方程:.2、兩圓位置關(guān)系:外離:;外切:;相交:;內(nèi)切:;內(nèi)含:.3、空間中兩點(diǎn)間距離公式:必修3數(shù)學(xué)知識點(diǎn)第一章:算法1、算法三種語言:自然語言、流程圖、程序語言;2、算法的三種基本結(jié)構(gòu): 順序結(jié)構(gòu)、選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)3、流程圖中的圖框:起止框、輸入輸出框、處理框、判斷框、流程線等規(guī)范表示方法;4、循環(huán)結(jié)構(gòu)中常見的兩種結(jié)構(gòu): 當(dāng)型循環(huán)結(jié)構(gòu)、直到型循環(huán)結(jié)構(gòu)5、基本算法語句:賦值語句:“=”(
9、有時也用“”)輸入輸出語句:“INPUT”“PRINT”條件語句:If ThenElseEnd If循環(huán)語句:“Do”語句DoUntil End“While”語句While WEnd算法案例:輾轉(zhuǎn)相除法同余思想第二章:統(tǒng)計1、抽樣方法:簡單隨機(jī)抽樣(總體個數(shù)較少)系統(tǒng)抽樣(總體個數(shù)較多)分層抽樣(總體中差異明顯)注意:在N個個體的總體中抽取出n個個體組成樣本,每個個體被抽到的機(jī)會(概率)均為。2、總體分布的估計:一表二圖:頻率分布表數(shù)據(jù)詳實(shí)頻率分布直方圖分布直觀頻率分布折線圖便于觀察總體分布趨勢注:總體分布的密度曲線與橫軸圍成的面積為1。莖葉圖:莖葉圖適用于數(shù)據(jù)較少的情況,從中便于看出數(shù)據(jù)的分
10、布,以及中位數(shù)、眾位數(shù)等。個位數(shù)為葉,十位數(shù)為莖,右側(cè)數(shù)據(jù)按照從小到大書寫,相同的藥重復(fù)寫。3、總體特征數(shù)的估計:平均數(shù):;取值為的頻率分別為,則其平均數(shù)為;注意:頻率分布表計算平均數(shù)要取組中值。方差與標(biāo)準(zhǔn)差:一組樣本數(shù)據(jù)方差:;標(biāo)準(zhǔn)差:注:方差與標(biāo)準(zhǔn)差越小,說明樣本數(shù)據(jù)越穩(wěn)定。平均數(shù)反映數(shù)據(jù)總體水平;方差與標(biāo)準(zhǔn)差反映數(shù)據(jù)的穩(wěn)定水平。線性回歸方程變量之間的兩類關(guān)系:函數(shù)關(guān)系與相關(guān)關(guān)系;制作散點(diǎn)圖,判斷線性相關(guān)關(guān)系線性回歸方程:(最小二乘法)注意:線性回歸直線經(jīng)過定點(diǎn)。第三章:概率1、隨機(jī)事件及其概率:事件:試驗(yàn)的每一種可能的結(jié)果,用大寫英文字母表示;必然事件、不可能事件、隨機(jī)事件的特點(diǎn);隨機(jī)事
11、件A的概率:;2、古典概型:基本事件:一次試驗(yàn)中可能出現(xiàn)的每一個基本結(jié)果;古典概型的特點(diǎn):所有的基本事件只有有限個;每個基本事件都是等可能發(fā)生。古典概型概率計算公式:一次試驗(yàn)的等可能基本事件共有n個,事件A包含了其中的m個基本事件,則事件A發(fā)生的概率。3、幾何概型:幾何概型的特點(diǎn):所有的基本事件是無限個;每個基本事件都是等可能發(fā)生。幾何概型概率計算公式:;其中測度根據(jù)題目確定,一般為線段、角度、面積、體積等。4、互斥事件:不能同時發(fā)生的兩個事件稱為互斥事件;如果事件任意兩個都是互斥事件,則稱事件彼此互斥。如果事件A,B互斥,那么事件A+B發(fā)生的概率,等于事件A,B發(fā)生的概率的和,即:如果事件彼
12、此互斥,則有:對立事件:兩個互斥事件中必有一個要發(fā)生,則稱這兩個事件為對立事件。事件的對立事件記作對立事件一定是互斥事件,互斥事件未必是對立事件。必修4數(shù)學(xué)知識點(diǎn)第一章、三角函數(shù)§、任意角1、 正角、負(fù)角、零角、象限角的概念.2、 與角終邊相同的角的集合:.§、弧度制1、 把長度等于半徑長的弧所對的圓心角叫做1弧度的角.2、 .3、弧長公式:.4、扇形面積公式:.§、任意角的三角函數(shù)1、 設(shè)是一個任意角,它的終邊與單位圓交于點(diǎn),那么:.2、 設(shè)點(diǎn)為角終邊上任意一點(diǎn),那么:(設(shè)),.3、 ,在四個象限的符號和三角函數(shù)線的畫法.4、 誘導(dǎo)公式一:(其中:)5、 特殊角
13、0°,30°,45°,60°,90°,180°,270°的三角函數(shù)值.§、同角三角函數(shù)的基本關(guān)系式1、 平方關(guān)系:.2、 商數(shù)關(guān)系:.§1.3、三角函數(shù)的誘導(dǎo)公式1、 誘導(dǎo)公式二:2、誘導(dǎo)公式三:3、誘導(dǎo)公式四:4、誘導(dǎo)公式五:5、誘導(dǎo)公式六:§、正弦、余弦函數(shù)的圖象1、記住正弦、余弦函數(shù)圖象:2、 能夠?qū)φ請D象講出正弦、余弦函數(shù)的相關(guān)性質(zhì):定義域、值域、最大最小值、對稱軸、對稱中心、奇偶性、單調(diào)性、周期性.3、 會用五點(diǎn)法作圖.§、正弦、余弦函數(shù)的性質(zhì)1、 周期函數(shù)定義:對于函數(shù),如
14、果存在一個非零常數(shù)T,使得當(dāng)取定義域內(nèi)的每一個值時,都有,那么函數(shù)就叫做周期函數(shù),非零常數(shù)T叫做這個函數(shù)的周期.§、正切函數(shù)的圖象與性質(zhì)1、記住正切函數(shù)的圖象:2、 能夠?qū)φ請D象講出正切函數(shù)的相關(guān)性質(zhì):定義域、值域、對稱中心、奇偶性、單調(diào)性、周期性.§1.5、函數(shù)的圖象1、 能夠講出函數(shù)的圖象和函數(shù)的圖象之間的平移伸縮變換關(guān)系.2、 對于函數(shù):有:振幅A,周期,初相,相位,頻率.§1.6、三角函數(shù)模型的簡單應(yīng)用1、 要求熟悉課本例題.第二章、平面向量§、向量的物理背景與概念1、 了解四種常見向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量
15、.§、向量的幾何表示1、 帶有方向的線段叫做有向線段,有向線段包含三個要素:起點(diǎn)、方向、長度.2、 向量的大小,也就是向量的長度(或稱模),記作;長度為零的向量叫做零向量;長度等于1個單位的向量叫做單位向量.3、 方向相同或相反的非零向量叫做平行向量(或共線向量).規(guī)定:零向量與任意向量平行.§、相等向量與共線向量1、 長度相等且方向相同的向量叫做相等向量.§、向量加法運(yùn)算及其幾何意義1、 三角形法則和平行四邊形法則.2、 .§、向量減法運(yùn)算及其幾何意義1、 與長度相等方向相反的向量叫做的相反向量.§、向量數(shù)乘運(yùn)算及其幾何意義1、 規(guī)定:實(shí)數(shù)與
16、向量的積是一個向量,這種運(yùn)算叫做向量的數(shù)乘.記作:,它的長度和方向規(guī)定如下:,當(dāng)時, 的方向與的方向相同;當(dāng)時, 的方向與的方向相反.2、 平面向量共線定理:向量與 共線,當(dāng)且僅當(dāng)有唯一一個實(shí)數(shù),使.§、平面向量基本定理1、 平面向量基本定理:如果是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)任一向量,有且只有一對實(shí)數(shù),使.§、平面向量的正交分解及坐標(biāo)表示1、 .§、平面向量的坐標(biāo)運(yùn)算1、 設(shè),則:,.2、 設(shè),則:.§、平面向量共線的坐標(biāo)表示1、設(shè),則線段AB中點(diǎn)坐標(biāo)為,ABC的重心坐標(biāo)為.§、平面向量數(shù)量積的物理背景及其含義1、 .2、 在方向上的投影為:.3、 .4、 .5、 .§、平面向量數(shù)量積的坐標(biāo)表示、模、夾角1、 設(shè),則:2、 設(shè),則:.§、平面幾何中的向量方法§、向量在物理中的應(yīng)用舉例第三章、三角恒等變換§、兩角差的余弦公式1、2、記住15°的三角函數(shù)值:§、兩角和與差的正弦、余弦、正切公式1、2、3、4、.5、.§、二倍角的正弦、余弦、正切公式1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Z=82附近原子核形狀共存研究
- 面向數(shù)據(jù)與設(shè)備異構(gòu)的聯(lián)邦學(xué)習(xí)優(yōu)化方法研究與應(yīng)用
- 無人駕駛車輛對微循環(huán)影響
- 現(xiàn)代企業(yè)管理學(xué)教案
- 物業(yè)管理規(guī)定股份公司的規(guī)范指南
- 2025年電商平臺數(shù)據(jù)分析與精準(zhǔn)營銷:大數(shù)據(jù)視角下的電商競爭策略優(yōu)化研究報告
- 2025射頻識別(RFID)技術(shù)在工業(yè)互聯(lián)網(wǎng)平臺上的智能工廠生產(chǎn)設(shè)備維護(hù)報告
- 腫瘤治療市場2025年展望:精準(zhǔn)醫(yī)療技術(shù)市場規(guī)模與市場趨勢洞察報告
- 教育政策下的學(xué)生評價改革
- 2025年文化產(chǎn)業(yè)發(fā)展與文化資源區(qū)域整合的數(shù)字文化產(chǎn)業(yè)政策環(huán)境分析報告
- 廣東深圳市南山區(qū)機(jī)關(guān)事業(yè)單位面向高校畢業(yè)生招聘編外人員104人歷年重點(diǎn)基礎(chǔ)提升難、易點(diǎn)模擬試題(共500題)附帶答案詳解
- 放化療相關(guān)口腔黏膜炎預(yù)防及護(hù)理課件
- 北京市海淀區(qū)2025屆高一下生物期末檢測模擬試題含解析
- JT∕T 795-2023 事故汽車修復(fù)技術(shù)規(guī)范
- 2024四川廣元市檢察機(jī)關(guān)招聘聘用制書記員22人筆試備考題庫及答案解析
- 內(nèi)科患者VTE風(fēng)險評估表
- 一年級上冊美術(shù)教案-第1課 讓大家認(rèn)識我:誠實(shí)最好 ▏人美版
- 科學(xué)認(rèn)識天氣智慧樹知到期末考試答案2024年
- (高清版)DZT 0064.15-2021 地下水質(zhì)分析方法 第15部分:總硬度的測定 乙二胺四乙酸二鈉滴定法
- 心理體檢收費(fèi)目錄
- 雅魯藏布江米林-加查段沿線暴雨泥石流危險度評價的中期報告
評論
0/150
提交評論