構(gòu)造對(duì)偶式的八種途徑_第1頁(yè)
構(gòu)造對(duì)偶式的八種途徑_第2頁(yè)
構(gòu)造對(duì)偶式的八種途徑_第3頁(yè)
構(gòu)造對(duì)偶式的八種途徑_第4頁(yè)
構(gòu)造對(duì)偶式的八種途徑_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上構(gòu)造對(duì)偶式的八種途徑在數(shù)學(xué)解題過(guò)程中,合理地構(gòu)造形式相似,具有某種對(duì)稱關(guān)系的一對(duì)對(duì)偶關(guān)系式,并通過(guò)對(duì)這對(duì)對(duì)偶關(guān)系式進(jìn)行適當(dāng)?shù)暮?差,積等運(yùn)算,往往能使問(wèn)題得到巧妙的解決,收到事半功倍的效果。一 和差對(duì)偶對(duì)于表達(dá)式,我們可構(gòu)造表達(dá)式作為它的對(duì)偶關(guān)系式。例若,且,求的值。解析:構(gòu)造對(duì)偶式:則得再由,得:。點(diǎn)評(píng):這種構(gòu)造對(duì)偶式的方法靈巧,富有創(chuàng)意,有助于培養(yǎng)學(xué)生的創(chuàng)新思維和創(chuàng)造能力。例已知:,且,求證:。解:則有:又,故,即原不等式成立。例解方程:解:構(gòu)造對(duì)偶式:,再由原方程聯(lián)立可解得:那么得:得:,即,代入()中得:,整理得:,解得:。二 互倒對(duì)偶互倒對(duì)偶是指針對(duì)式子的結(jié)

2、構(gòu),通過(guò)對(duì)式中的某些元素取倒數(shù)來(lái)構(gòu)造對(duì)偶式的方法。例若,求證:。解:設(shè),構(gòu)造對(duì)偶式:,則而,故,即。例設(shè)為互不相等的正整數(shù),求證:。解:設(shè),構(gòu)造對(duì)偶式:則又為互不相等的正整數(shù),所以,因此。點(diǎn)評(píng):解題時(shí)巧妙構(gòu)思,對(duì)其構(gòu)造了“意料之中”的對(duì)偶式,化新為舊,等價(jià)轉(zhuǎn)化,完成對(duì)難點(diǎn)的突破,以達(dá)化解問(wèn)題這目的。例已知對(duì)任意總有,求函數(shù)的解析式。解析:因用替代上式中的,構(gòu)造對(duì)偶式:由得:故。三 共軛對(duì)偶共軛對(duì)偶是反映利用共軛根式或共軛復(fù)數(shù)來(lái)構(gòu)造對(duì)偶式的方法。例已知,解方程:。解析:由構(gòu)造對(duì)偶式:由得,代入得,故或。例若,已知且,證明:為純虛數(shù)。解:設(shè),則,構(gòu)造對(duì)偶式:則(因?yàn)椋┯郑ㄒ驗(yàn)椋榧兲摂?shù)。例已知:,

3、且,求證:。證明:設(shè),構(gòu)造對(duì)偶式:,即原不等式成立。四 倒序?qū)ε嫉剐驅(qū)ε际侵羔槍?duì)式子的結(jié)構(gòu),通過(guò)和式或積式進(jìn)行倒序構(gòu)造對(duì)偶式的方法。例求和:解析:觀察和式聯(lián)想到,故首先在和式右邊添上一項(xiàng),則構(gòu)造對(duì)偶式:即亦為:由得:點(diǎn)評(píng):利用現(xiàn)成的對(duì)偶式,使問(wèn)題本身變得簡(jiǎn)單,便易,如此處理,可謂“勝似閑庭信步”,豈不妙哉!例正項(xiàng)等比數(shù)列中,試用,表示。解析:傳統(tǒng)解法都用表示,及,然后通過(guò)和找到,的等量關(guān)系,這種解法雖思路正確,但運(yùn)算繁瑣,加之在用等比數(shù)列求和公式時(shí)還要討論和兩種情形,如此解題會(huì)陷入漫漫無(wú)期的運(yùn)算之中,很少有人能夠到達(dá)終點(diǎn)。其實(shí),觀察和式子與積式特征不妨采取“本末倒置”構(gòu)造倒序?qū)ε夹蚴揭辉嚒S深}

4、意知:構(gòu)造倒序?qū)ε际剑河傻茫海丛賮?lái)看:構(gòu)造倒序?qū)ε际剑杭吹茫?,即。由等比?shù)列性質(zhì)可知,右邊的分母均為,故即,又。五 定值對(duì)偶定值對(duì)偶是指能利用和,差,積,商等運(yùn)算產(chǎn)生定值,并借此構(gòu)造出對(duì)偶式的方法。例已知函數(shù)。,則。解析:發(fā)現(xiàn)定值:。那么構(gòu)造對(duì)偶式:由得:,即。六 奇偶數(shù)對(duì)偶奇偶數(shù)對(duì)偶指利用整數(shù)的分類中奇數(shù)與偶數(shù)的對(duì)稱性構(gòu)造對(duì)偶式的方法。例求證:。解:設(shè),構(gòu)造對(duì)偶式:。由于因此,從而故。例求證:證明:待證不等式的左邊為:。令:構(gòu)造兩個(gè)對(duì)偶式:故原不等式成立。七 輪換對(duì)偶輪換對(duì)偶是指針對(duì)式子的結(jié)構(gòu),通過(guò)輪換字母而構(gòu)造對(duì)偶式的方法。例求證:對(duì)任意實(shí)數(shù),都有不等式成立。證明:設(shè)構(gòu)造對(duì)偶式,則,即而,即。當(dāng)且僅當(dāng)時(shí)等號(hào)成立。例設(shè),求證:。證明:設(shè),構(gòu)造對(duì)偶式:,。又,即,。八 互余對(duì)偶三角中的正弦與余弦是兩個(gè)對(duì)稱元素,利用互余函數(shù)構(gòu)造對(duì)偶式,借用配對(duì)思想可以輕松完成有關(guān)三角題的解答。例已知,解方程:解析:若令,構(gòu)造對(duì)偶式:則:由得:,又或或。例求的值。解析:令,構(gòu)造對(duì)偶式:,則點(diǎn)評(píng):這是一道比較典型的三角求值題。通過(guò)對(duì)題目結(jié)構(gòu)特征的觀察,由目標(biāo)導(dǎo)向,構(gòu)造對(duì)偶式,從而獨(dú)辟蹊徑,出奇制勝。在數(shù)學(xué)解題過(guò)程中,如果我們恰當(dāng)?shù)貥?gòu)造對(duì)偶關(guān)系式,不僅能提高解題速度,而且能收到以簡(jiǎn)馭

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論