范文簡(jiǎn)單的線性規(guī)劃問(wèn)題練習(xí)題及答案解析_第1頁(yè)
范文簡(jiǎn)單的線性規(guī)劃問(wèn)題練習(xí)題及答案解析_第2頁(yè)
范文簡(jiǎn)單的線性規(guī)劃問(wèn)題練習(xí)題及答案解析_第3頁(yè)
范文簡(jiǎn)單的線性規(guī)劃問(wèn)題練習(xí)題及答案解析_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1.目標(biāo)函數(shù)z= 4x+y,將其看成直線方程時(shí),z的幾何意義是()A.該直線的截距B.該直線的縱截距C.該直線的橫截距D.該直線的縱截距的相反數(shù)解析:選B.把z= 4x+y變形為y=- 4x+ z,則此方程為直線方程的斜截式,所以 z為該直線的縱截 距.2.若x>0, y> 0,且x + y< 1,則z= x- y的最大值為()A. - 1B. 1C. 2D . - 2答案:Bx + y 2> 0,3 .若實(shí)數(shù)x、y滿足x<4,則$=*+丫的最大值為 .y<5,解析:可行域如圖所示,作直線y=x,當(dāng)平移直線y = -x至點(diǎn)A處時(shí),S= x+y取得最大值,即

2、Smax=4+5=9.答案:9y< 2x4 .已知實(shí)數(shù)x、y滿足y>- 2x.x< 3(1)求不等式組表示的平面區(qū)域的面積;(2)若目標(biāo)函數(shù)為z= x 2y,求z的最小值.解:畫(huà)出滿足不等式組的可行域如圖所示:(1)易求點(diǎn) A、B 的坐標(biāo)為:A(3,6), B(3, 6),所以三角形OAB的面積為:1 一SZOAB = 2* 12* 3 = 18. 1z 一,1 一 , z,- 1, ,一(2)目標(biāo)函數(shù)化為:y= 2x-2,國(guó)直線y = 2x及其平行線,當(dāng)此直線經(jīng)過(guò)A時(shí),2的值最大,z的值最小,易求 A點(diǎn)坐標(biāo)為(3,6),所以,z的最小值為3-2X6=- 9.一、選擇題2x-

3、y+ 1 >01. z= x-y在x-2y-1<0 的線性約束條件下,取得最大值的可行解為()x + y< 1A. (0,1)B. (1, - 1)1 1C. (1,0)D. (-, 2)解析:選C.可以驗(yàn)證這四個(gè)點(diǎn)均是可行解,當(dāng) x=0, y=1時(shí),z= 1;當(dāng)x=1, y=1時(shí),z = .11 一0;當(dāng) x=1, y=0 時(shí),z=1;當(dāng) x=2, y=2時(shí),z=0.排除 A, B, D.x+3y-3>0,2. (2010年高考浙江卷)若實(shí)數(shù)x, y滿足不等式組2x y3<0,則x+y的最大值為()x y+1> 0,A. 9C. 1解析:選A.畫(huà)出可行域如

4、圖:令 z=x+ y,可變?yōu)?y=x+z,作出目標(biāo)函數(shù)線,平移目標(biāo)函數(shù)線,顯然過(guò)點(diǎn)2x y3=0,由得A(4,5) ,Zmax =4 + 5=9.x y+ 1 = 0,3.在AABC中,三頂點(diǎn)分別為A(2,4), B(1,2), C(1,0),點(diǎn)P(x, y)在 ABC內(nèi)部及其邊界上運(yùn)動(dòng),則m=yx的取值范圍為()A. 1,3B. -3,1C. -1,3D. 3, 12 一解析:選 C.直線 m = yx 的斜率 k1=1>kAB=w,且 k=1<kAC=4,3直線經(jīng)過(guò)C時(shí)m最小,為1,經(jīng)過(guò)B時(shí)m最大,為3.x-2<04,已知點(diǎn)P(x, y)在不等式組y- 1 < 0表

5、示的平面區(qū)域內(nèi)運(yùn)動(dòng),則z= x-y的取值范圍是x+2y-2>0()A. 2, - 1B. 2,1C. -1,2D. 1,2解析:選C.先畫(huà)出滿足約束條件的可行域,如圖陰影部分,. z= x y, .y=xz.由圖知截距一z的范圍為 2, 1,.z的范圍為1,2.x y+1 x + y 4 40,5.設(shè)動(dòng)點(diǎn)坐標(biāo)(x, y)滿足則x2+y2的最小值為()x> 3, y> 1.D . 10解析:選D.畫(huà)出不等式組所對(duì)應(yīng)的平面區(qū)域,由圖可知當(dāng)x=3, y=1時(shí),x2+y2的最小值為10.6. (2009年高考四川卷)某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸、B原料2

6、噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸、B原料3噸.銷(xiāo)售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元、每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元,該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過(guò)13噸、B原料不超過(guò)18噸,那么該企業(yè)可獲得的最大利潤(rùn)是()A. 12萬(wàn)元B. 20萬(wàn)元C. 25萬(wàn)元D . 27萬(wàn)元解析:選D.設(shè)生產(chǎn)甲產(chǎn)品x噸、乙產(chǎn)品y噸,則獲得的利潤(rùn)為 z= 5x+3y.由題意得x>0,y>0, 可行域如圖陰影所示.3x+y< 13,2x+3y< 18,由圖可知當(dāng)x、y在A點(diǎn)取值時(shí),z取得最大值,此時(shí) x=3, y = 4, z= 5 X 3+3 X 4 = 27(萬(wàn)元). 二、填空題0<x<

7、 17 .點(diǎn)P(x, y)滿足條件 0<y<1,則P點(diǎn)坐標(biāo)為 時(shí),z= 4-2x+y取最大值 .1 y-x>2解析:可行域如圖所示,當(dāng)y2x最大時(shí),z最大,此時(shí)直線 y2x=zi,過(guò)點(diǎn)A(0,1),)max= 1 ,故當(dāng)點(diǎn)P的坐標(biāo)為(0,1)時(shí)z =4 2x+y取得最大值5.答案:(0,1) 5x>08 .已知點(diǎn)P(x, y)滿足條件 y<x(k為常數(shù)),若x+3y的最大值為8,則k =.2x+y+k<0解析:作出可行域如圖所示:作直線lo:x+3y=0,平移10知當(dāng)10過(guò)點(diǎn)A時(shí),x+ 3y最大,由于 A點(diǎn)坐標(biāo)為(1,-). .-Z-k 333=8,從而 k

8、= - 6.答案:69 . (2010年高考陜西卷)鐵礦石A和B的含鐵率a,冶煉每萬(wàn)噸鐵礦石的CO2的排放量b及每萬(wàn)噸鐵礦石的價(jià)格c如下表:ab/萬(wàn)噸c/白力兀A50%13B70%6某冶煉廠至少要生產(chǎn)(萬(wàn)噸)鐵,若要求CO2的排放量不超過(guò) 2(萬(wàn)噸),則購(gòu)買(mǎi)鐵礦石的最少費(fèi)用為 (百萬(wàn)元).解析:設(shè)購(gòu)買(mǎi)A、B兩種鐵礦石分別為 x萬(wàn)噸、y萬(wàn)噸,購(gòu)買(mǎi)鐵礦石的費(fèi)用為z百萬(wàn)元,則z= 3x+6y.173+補(bǔ),2由題意可得約束條件為+ 2y 'x> 0,y> 0.作出可行域如圖所示:由圖可知,目標(biāo)函數(shù)z= 3x+6y在點(diǎn)A(1,2)處取得最小值,zmin = 3X 1 + 6X2=15

9、答案:15三、解答題0<x< 110 .設(shè)z=2y-2x+4,式中x, y滿足條件 0<y<2,求z的最大值和最小值.2y- x> 10<x< 1解:作出不等式組°<y<2的可行域(如圖所示).2y x> 1令 t=2y 2x 則 z = t+4.將t=2y- 2x變形得直線l :y=x + 2.則其與y = x平行,平移直線l時(shí)t的值隨直線l的上移而增大,故當(dāng)直線l經(jīng)過(guò)可行域上的點(diǎn) A時(shí),t最大,z最大;當(dāng)直線l經(jīng)過(guò)可行域上的點(diǎn) B時(shí),t最小,z最小.-zmax=2X 2-2X 0+4=8,zmin = 2 X 1 - 2

10、X 1 +4=4.xay 1>0x= 111 .已知實(shí)數(shù)x、y滿足約束條件2x+y>0 (a6R),目標(biāo)函數(shù)z=x+3y只有當(dāng) 時(shí)取得y= 0x< 1最大值,求a的取值范圍.2x+y> 0, 解:直線xay1 = 0過(guò)定點(diǎn)(1,0),畫(huà)出區(qū)域讓直線xay1 = 0繞著(1,0)旋轉(zhuǎn)得到x< 1 ,1不等式所表示的平面區(qū)域.平移直線x+3y=0,觀祭圖象知必須使直線xay1 =0的斜率M>0才滿足a要求,故a>0.12 .某家具廠有方木料 90 m3 ,五合板600 m2,準(zhǔn)備加工成書(shū)桌和書(shū)櫥出售.已知生產(chǎn)每張書(shū)桌需 要方木料m3,五合板2m2;生產(chǎn)每個(gè)

11、書(shū)櫥需要方木料m3,五合板1m2,出售一張方桌可獲利潤(rùn)80元;出售一個(gè)書(shū)櫥可獲利潤(rùn)120元.(1)如果只安排生產(chǎn)方桌,可獲利潤(rùn)多少?(2)如果只安排生產(chǎn)書(shū)櫥,可獲利潤(rùn)多少?(3)怎樣安排生產(chǎn)可使所獲利潤(rùn)最大?解:由題意可畫(huà)表格如下:方木料(m3)五合板(m2)利潤(rùn)(元)書(shū)桌(個(gè))280書(shū)櫥(個(gè))1120設(shè)只生產(chǎn)書(shū)桌x張,可獲利潤(rùn)z元, 則錯(cuò)誤???錯(cuò)誤?。縳< 300, x6N*.目標(biāo)函數(shù)為 z=80x.所以當(dāng) x=300 時(shí),zmax= 80X 300= 24000(元),即如果只安排生產(chǎn)書(shū)桌,最多可生產(chǎn)300張書(shū)桌,獲得利潤(rùn) 24000元.(2)設(shè)只生產(chǎn)書(shū)櫥y個(gè),可獲利潤(rùn)z元,則錯(cuò)誤!?錯(cuò)誤???y<450, y N*.目標(biāo)函數(shù)為 z= 120y.所以當(dāng) y=450 時(shí),zmax= 120X 450 = 54000(元),即如果只安排生產(chǎn)書(shū)櫥,最多可生產(chǎn)450個(gè)書(shū)櫥,獲得利潤(rùn) 54000元.(3)設(shè)生產(chǎn)書(shū)桌x張,書(shū)櫥y個(gè),利潤(rùn)總額為 z元,則錯(cuò)誤???錯(cuò)誤!目標(biāo)函數(shù)為 z= 80x+ 120y.在直角坐標(biāo)平面內(nèi)作出上面不等式組所表示的平面區(qū)域,即可行域(圖略).作直線 l:80x+ 120y= 0,即直線 l :2x+ 3y= 0(圖略).把

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論