




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、BP神經(jīng)網(wǎng)絡(luò)算法原理:輸入信號通過中間節(jié)點(隱層點)作用于輸出節(jié)點,經(jīng)過非線形變換,產(chǎn)生輸出信號,網(wǎng)絡(luò)訓(xùn)練的每個樣本包括輸入向量和期望輸出量,網(wǎng)絡(luò)輸出值與期望輸出值之間的偏差,通過調(diào)整輸入節(jié)點與隱層節(jié)點的聯(lián)接強度取值和隱層節(jié)點與輸出節(jié)點之間的聯(lián)接強度以及閾值,使誤差沿梯度方向下降,經(jīng)過反復(fù)學(xué)習(xí)訓(xùn)練,確定與最小誤差相對應(yīng)的網(wǎng)絡(luò)參數(shù)(權(quán)值和閾值),訓(xùn)練即告停止。此時經(jīng)過訓(xùn)練的神經(jīng)網(wǎng)絡(luò)即能對類似樣本的輸入信息,自行處理輸出誤差最小的經(jīng)過非線形轉(zhuǎn)換的信息。變量定義:設(shè)輸入層有個神經(jīng)元,隱含層有個神經(jīng)元,輸出層有個神經(jīng)元輸入向量:隱含層輸入向量:隱含層輸出向量:輸出層輸入向量:輸出層輸出向量:期望輸出向
2、量: 輸入層與中間層的連接權(quán)值: 隱含層與輸出層的連接權(quán)值: 隱含層各神經(jīng)元的閾值: 輸出層各神經(jīng)元的閾值: 樣本數(shù)據(jù)個數(shù): 激活函數(shù): 誤差函數(shù):1 / 10算法步驟:Step1.網(wǎng)絡(luò)初始化 。給各連接權(quán)值分別賦一個區(qū)間(-1,1)內(nèi)的隨機數(shù),設(shè)定誤差函數(shù),給定計算精度值和最大學(xué)習(xí)次數(shù)M。Step2.隨機選取第個輸入樣本及對應(yīng)期望輸出 Step3.計算隱含層各神經(jīng)元的輸入和輸出及輸出層各神經(jīng)元的輸入和輸出Step4.利用網(wǎng)絡(luò)期望輸出和實際輸出,計算誤差函數(shù)對輸出層的各神經(jīng)元的偏導(dǎo)數(shù)。Step5.利用隱含層到輸出層的連接權(quán)值、輸出層的和隱含層的輸出計算誤差函數(shù)對隱含層各神經(jīng)元的偏導(dǎo)數(shù)。Step
3、6.利用輸出層各神經(jīng)元的和隱含層各神經(jīng)元的輸出來修正連接權(quán)值。Step7.利用隱含層各神經(jīng)元的和輸入層各神經(jīng)元的輸入修正連接權(quán)。 Step8.計算全局誤差。Step9.判斷網(wǎng)絡(luò)誤差是否滿足要求。當(dāng)誤差達(dá)到預(yù)設(shè)精度或?qū)W習(xí)次數(shù)大于設(shè)定的最大次數(shù),則結(jié)束算法。否則,選取下一個學(xué)習(xí)樣本及對應(yīng)的期望輸出,返回到第三步,進(jìn)入下一輪學(xué)習(xí)。 算法流程圖: 輸入,根據(jù)網(wǎng)絡(luò)的狀態(tài)方程計算網(wǎng)絡(luò)輸出網(wǎng)絡(luò)初始化計算全局誤差:修改權(quán)值:訓(xùn)練完成達(dá)到最大學(xué)習(xí)次數(shù)NONOYESYES參數(shù)確定:確定了網(wǎng)絡(luò)層數(shù)、每層節(jié)點數(shù)、傳遞函數(shù)、初始權(quán)系數(shù)、學(xué)習(xí)算法等也就確定了BP網(wǎng)絡(luò)。確定這些選項時有一定的指導(dǎo)原則,但更多的是靠經(jīng)驗和試湊
4、。 1. 樣本數(shù)據(jù)采用BP神經(jīng)網(wǎng)絡(luò)方法建模的首要和前提條件是有足夠多典型性好和精度高的樣本。而且,為監(jiān)控訓(xùn)練(學(xué)習(xí))過程使之不發(fā)生“過擬合”和評價建立的網(wǎng)絡(luò)模型的性能和泛化能力,必須將收集到的數(shù)據(jù)隨機分成訓(xùn)練樣本、檢驗樣本(10%以上)和測試樣本(10%以上)3部分。2.輸入/輸出變量一般地,BP網(wǎng)絡(luò)的輸入變量即為待分析系統(tǒng)的內(nèi)生變量(影響因子或自變量)數(shù),一般根據(jù)專業(yè)知識確定。若輸入變量較多,一般可通過主成份分析方法壓減輸入變量,也可根據(jù)剔除某一變量引起的系統(tǒng)誤差與原系統(tǒng)誤差的比值的大小來壓減輸入變量。輸出變量即為系統(tǒng)待分析的外生變量(系統(tǒng)性能指標(biāo)或因變量),可以是一個,也可以是多個。一般將
5、一個具有多個輸出的網(wǎng)絡(luò)模型轉(zhuǎn)化為多個具有一個輸出的網(wǎng)絡(luò)模型效果會更好,訓(xùn)練也更方便。3.數(shù)據(jù)的預(yù)處理由于BP神經(jīng)網(wǎng)絡(luò)的隱層一般采用Sigmoid轉(zhuǎn)換函數(shù),為提高訓(xùn)練速度和靈敏性以及有效避開Sigmoid函數(shù)的飽和區(qū),一般要求輸入數(shù)據(jù)的值在01之間。因此,要對輸入數(shù)據(jù)進(jìn)行預(yù)處理。一般要求對不同變量分別進(jìn)行預(yù)處理,也可以對類似性質(zhì)的變量進(jìn)行統(tǒng)一的預(yù)處理。如果輸出層節(jié)點也采用Sigmoid轉(zhuǎn)換函數(shù),輸出變量也必須作相應(yīng)的預(yù)處理,否則,輸出變量也可以不做預(yù)處理。但必須注意的是,預(yù)處理的數(shù)據(jù)訓(xùn)練完成后,網(wǎng)絡(luò)輸出的結(jié)果要進(jìn)行反變換才能得到實際值。再者,為保證建立的模型具有一定的外推能力,最好使數(shù)據(jù)預(yù)處理后
6、的值在0.20.8之間。標(biāo)準(zhǔn)化:4.隱層數(shù)一般認(rèn)為,增加隱層數(shù)可以降低網(wǎng)絡(luò)誤差,提高精度,但也使網(wǎng)絡(luò)復(fù)雜化,從而增加了網(wǎng)絡(luò)的訓(xùn)練時間和出現(xiàn)“過擬合(overfitting)” 造成網(wǎng)絡(luò)的性能脆弱,泛化能力(generalization ability)下降。Hornik等早已證明:若輸入層和輸出層采用線性轉(zhuǎn)換函數(shù),隱層采用Sigmoid轉(zhuǎn)換函數(shù),則含一個隱層的MLP網(wǎng)絡(luò)能夠以任意精度逼近任何有理函數(shù)。顯然,這是一個存在性結(jié)論。在設(shè)計BP網(wǎng)絡(luò)時可參考這一點,應(yīng)優(yōu)先考慮3層BP網(wǎng)絡(luò)(即有1個隱層)。1x2x1Nx1y2y2Ny1z2z3Nz1D2D3ND1T2Tihwhjw-隱含層輸出層輸入層3N
7、T圖 三層BP網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)5.隱層節(jié)點數(shù)在BP 網(wǎng)絡(luò)中,若隱層節(jié)點數(shù)太少,網(wǎng)絡(luò)可能根本不能訓(xùn)練或網(wǎng)絡(luò)性能很差;若隱層節(jié)點數(shù)太多,雖然可使網(wǎng)絡(luò)的系統(tǒng)誤差減小,但一方面使網(wǎng)絡(luò)訓(xùn)練時間延長,另一方面,訓(xùn)練容易陷入局部極小點而得不到最優(yōu)點,也是訓(xùn)練時出現(xiàn)“過擬合”的內(nèi)在原因,但是目前理論上還沒有一種科學(xué)的和普遍的確定方法。為盡可能避免訓(xùn)練時出現(xiàn)“過擬合”現(xiàn)象,保證足夠高的網(wǎng)絡(luò)性能和泛化能力,確定隱層節(jié)點數(shù)的最基本原則是:在滿足精度要求的前提下取盡可能緊湊的結(jié)構(gòu),即取盡可能少的隱層節(jié)點數(shù)。因此,合理隱層節(jié)點數(shù)應(yīng)在綜合考慮網(wǎng)絡(luò)結(jié)構(gòu)復(fù)雜程度和誤差大小的情況下用節(jié)點刪除法和擴張法確定。6.傳遞函數(shù)圖BP網(wǎng)絡(luò)
8、常用的傳遞函數(shù)BP網(wǎng)絡(luò)的傳遞函數(shù)有多種。Log-sigmoid型函數(shù)的輸入值可取任意值,輸出值在0和1之間;tan-sigmod型傳遞函數(shù)tansig的輸入值可取任意值,輸出值在-1到+1之間;線性傳遞函數(shù)purelin的輸入與輸出值可取任意值。BP網(wǎng)絡(luò)通常有一個或多個隱層,該層中的神經(jīng)元均采用sigmoid型傳遞函數(shù),輸出層的神經(jīng)元則采用線性傳遞函數(shù),整個網(wǎng)絡(luò)的輸出可以取任意值。7.學(xué)習(xí)率 學(xué)習(xí)率影響系統(tǒng)學(xué)習(xí)過程的穩(wěn)定性。大的學(xué)習(xí)率可能使網(wǎng)絡(luò)權(quán)值每一次的修正量過大,甚至?xí)?dǎo)致權(quán)值在修正過程中超出某個誤差的極小值呈不規(guī)則跳躍而不收斂;但過小的學(xué)習(xí)率導(dǎo)致學(xué)習(xí)時間過長,不過能保證收斂于某個極小值。
9、所以,一般傾向選取較小的學(xué)習(xí)率以保證學(xué)習(xí)過程的收斂性(穩(wěn)定性),通常在0.010.8之間。8.網(wǎng)絡(luò)的初始連接權(quán)值BP算法決定了誤差函數(shù)一般存在(很)多個局部極小點,不同的網(wǎng)絡(luò)初始權(quán)值直接決定了BP算法收斂于哪個局部極小點或是全局極小點。因此,要求計算程序必須能夠自由改變網(wǎng)絡(luò)初始連接權(quán)值。由于Sigmoid轉(zhuǎn)換函數(shù)的特性,一般要求初始權(quán)值分布在-0.50.5之間比較有效。10收斂誤差界值Emin 在網(wǎng)絡(luò)訓(xùn)練過程中應(yīng)根據(jù)實際情況預(yù)先確定誤差界值。誤差界值的選擇完全根據(jù)網(wǎng)絡(luò)模型的收斂速度大小和具體樣本的學(xué)習(xí)精度來確定。當(dāng)Emin 值選擇較小時,學(xué)習(xí)效果好,但收斂速度慢,訓(xùn)練次數(shù)增加。如果Emin值取
10、得較大時則相反。網(wǎng)絡(luò)模型的性能和泛化能力:訓(xùn)練神經(jīng)網(wǎng)絡(luò)的首要和根本任務(wù)是確保訓(xùn)練好的網(wǎng)絡(luò)模型對非訓(xùn)練樣本具有好的泛化能力(推廣性),即有效逼近樣本蘊含的內(nèi)在規(guī)律,而不是看網(wǎng)絡(luò)模型對訓(xùn)練樣本的擬合能力。判斷建立的模型是否已有效逼近樣本所蘊含的規(guī)律, 主要不是看測試樣本誤差大小的本身,而是要看測試樣本的誤差是否接近于訓(xùn)練樣本和檢驗樣本的誤差。非訓(xùn)練樣本誤差很接近訓(xùn)練樣本誤差或比其小,一般可認(rèn)為建立的網(wǎng)絡(luò)模型已有效逼近訓(xùn)練樣本所蘊含的規(guī)律,否則,若相差很多(如幾倍、幾十倍甚至上千倍)就說明建立的網(wǎng)絡(luò)模型并沒有有效逼近訓(xùn)練樣本所蘊含的規(guī)律,而只是在這些訓(xùn)練樣本點上逼近而已,而建立的網(wǎng)絡(luò)模型是對訓(xùn)練樣本
11、所蘊含規(guī)律的錯誤反映。算法的特點:1.非線性映照能力。神經(jīng)網(wǎng)絡(luò)能以任意精度逼近任何非線性連續(xù)函數(shù)。在建模過程中的許多問題正是具有高度的非線性。2.并行分布處理方式。在神經(jīng)網(wǎng)絡(luò)中信息是分布儲存和并行處理的,這使它具有很強的容錯性和很快的處理速度。3.自學(xué)習(xí)和自適應(yīng)能力。神經(jīng)網(wǎng)絡(luò)在訓(xùn)練時,能從輸入、輸出的數(shù)據(jù)中提取出規(guī)律性的知識,記憶于網(wǎng)絡(luò)的權(quán)值中,并具有泛化能力,即將這組權(quán)值應(yīng)用于一般情形的能力。神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)也可以在線進(jìn)行。4.數(shù)據(jù)融合的能力。神經(jīng)網(wǎng)絡(luò)可以同時處理定量信息和定性信息,因此它可以利用傳統(tǒng)的工程技術(shù)(數(shù)值運算)和人工智能技術(shù)(符號處理)。5.多變量系統(tǒng)。神經(jīng)網(wǎng)絡(luò)的輸入和輸出變量的數(shù)
12、目是任意的,對單變量系統(tǒng)與多變量系統(tǒng)提供了一種通用的描述方式,不必考慮各子系統(tǒng)間的解耦問題算法的缺點:收斂速度緩慢;容易陷入局部極小值;難以確定隱層數(shù)和隱層節(jié)點個數(shù)。算法的改進(jìn):1. 利用動量法改進(jìn)BP算法標(biāo)準(zhǔn)BP算法實質(zhì)上是一種簡單的最速下降靜態(tài)尋優(yōu)方法,在修正時,只按照第步的負(fù)梯度方向進(jìn)行修正,而沒有考慮到以前積累的經(jīng)驗,即以前時刻的梯度方向,從而常常使學(xué)習(xí)過程發(fā)生振蕩,收斂緩慢。動量法權(quán)值調(diào)整算法的具體做法是:將上一次權(quán)值調(diào)整量的一部分迭加到按本次誤差計算所得的權(quán)值調(diào)整量上,作為本次的實際權(quán)值調(diào)整量,即:其中:為動量系數(shù),通常00.9;學(xué)習(xí)率,范圍在0.00110之間。這種方法所加的動量
13、因子實際上相當(dāng)于阻尼項,它減小了學(xué)習(xí)過程中的振蕩趨勢,從而改善了收斂性。動量法降低了網(wǎng)絡(luò)對于誤差曲面局部細(xì)節(jié)的敏感性,有效的抑制了網(wǎng)絡(luò)陷入局部極小。2.自適應(yīng)調(diào)整學(xué)習(xí)速率標(biāo)準(zhǔn)BP算法收斂速度緩慢的一個重要原因是學(xué)習(xí)率選擇不當(dāng),學(xué)習(xí)率選得太小,收斂太慢;學(xué)習(xí)率選得太大,則有可能修正過頭,導(dǎo)致振蕩甚至發(fā)散。可采用下圖所示的自適應(yīng)方法調(diào)整學(xué)習(xí)率。調(diào)整的基本指導(dǎo)思想是:在學(xué)習(xí)收斂的情況下,增大,以縮短學(xué)習(xí)時間;當(dāng)偏大致使不能收斂時,要及時減小,直到收斂為止。3. 動量-自適應(yīng)學(xué)習(xí)速率調(diào)整算法采用動量法時,BP算法可以找到更優(yōu)的解;采用自適應(yīng)學(xué)習(xí)速率法時,BP算法可以縮短訓(xùn)練時間。將以上兩種方法結(jié)合起來,就得到動量-自適應(yīng)學(xué)習(xí)速率調(diào)整算法。4.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 血細(xì)胞培養(yǎng)技術(shù)
- 植物細(xì)胞間質(zhì)成分
- 梅毒患兒護(hù)理查房
- 中醫(yī)冬季養(yǎng)生護(hù)理
- 2025年微商項目立項申請報告
- 安徽統(tǒng)考素描題目及答案
- it固定句型題目及答案
- 梁甫行課件教學(xué)課件
- 2025年微滴灌過濾設(shè)備項目規(guī)劃申請報告
- 《念奴嬌赤壁懷古》(教學(xué)設(shè)計)-高一語文(高教版2023基礎(chǔ)模塊上冊)
- 復(fù)雜應(yīng)用的C語言設(shè)計考題及答案
- 中華護(hù)理學(xué)會團(tuán)體標(biāo)準(zhǔn)|2024 針刺傷預(yù)防與處理課件
- 國家開放大學(xué)國開電大《健康管理實務(wù)》形考及期末終考題庫
- 2025安全生產(chǎn)月全員安全主題宣講課件二十六(41ye)
- 浙江省杭州市保俶塔中學(xué)2025屆八下數(shù)學(xué)期末經(jīng)典試題含解析
- 2025水利工程總承包合同
- 2025入團(tuán)積極分子發(fā)展對象考試題庫及答案詳解(必刷)
- 2025河南省農(nóng)業(yè)信貸擔(dān)保有限責(zé)任公司招聘32人筆試參考題庫附帶答案詳解
- 2025 年發(fā)展對象培訓(xùn)考試題及答案
- 《高效吸引目標(biāo)客戶》課件
- 江蘇鎮(zhèn)江歷年中考作文題與審題指導(dǎo)(2003-2020)
評論
0/150
提交評論