




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 南 京 理 工 大 學 紫 金 學 院畢業(yè)設計(論文)外文資料翻譯系: 機械工程系 專 業(yè): 機械工程及自動化 姓 名: 周小峰 學 號: 100104259 外文出處: Proceedings of International Symposium 附 件: 1.外文資料翻譯譯文;2.外文原文。 指導教師評語: 該生翻譯了一篇有關重載伺服電機設計在機器人中的應用的論文,論文內容主要涉及重載伺服電機在機器人領域的應用,在將來的課題“蜘蛛機器人兒童玩具設計與仿真”中可以借鑒。譯文語句基本通順,專業(yè)術語基本正確。說明該生具備一定的英語水平和翻譯能力。 簽名: 年 月 日附件1:外文資料翻譯譯文重載
2、伺服電機設計在機器人中的應用本文介紹了一個為機器人應用而設計的重型伺服電機系統(tǒng)。這個傳統(tǒng)的遙控(R / C)系統(tǒng)是一個精致的,可被遠程的裝置。由于傳統(tǒng)控制的的R / C伺服電機是容易的,它的成本是比較便宜的,所以R/ C伺服系統(tǒng)應用于廣泛的領域。然而,一個R/ C伺服電機在許多應用方面,輸出扭矩是小于需求的。而機器人設計和遙控車或飛機需要較高扭矩。因此,具有較高扭矩的電機是易控制的,是有利的。在本文中,齒輪直流電機作為控制機和電位器安裝在輸出軸上的位置反饋傳感器。重型的R / C伺服電機利用一個單穩(wěn)多諧振蕩器,它產(chǎn)生0.5到2.5毫秒的脈沖寬度調制(PWM)信號來驅動發(fā)動。本研究結果證明一個重
3、型的R / C伺服電機在機器人應用方面比商業(yè)的R / C伺服電機能提供更多的扭矩。 關鍵詞:遙控電機,脈沖寬度調制,重型,伺服發(fā)動機。一 引言 在機器人控制中的應用,設計人員通常選擇直流伺服電機或無刷伺服電機作為制動器來驅動各個關節(jié)。因為復雜的驅動系統(tǒng),這兩種類型的伺服電機較為昂貴的。此外,還需要在機器人的多個環(huán)節(jié)設計多個伺服電機,這會使機器人的設計過于昂貴。實際的使用情況,R / C伺服是一個包含旋轉定位的裝配,最初設計來控制的R / C飛機或船。R / C伺服電機的PWM信號被控制在0.5到2.5毫秒,軸旋轉可以被控制在-90度到90度。機器人關節(jié)由這樣一個R / C驅動伺服電機控制是容易
4、的。機器人控制系統(tǒng)可以通過發(fā)送適當?shù)腜WM信號來控制這些電機。但是,市場上的R / C伺服電機大多數(shù)是高扭矩,不合格的。因為可用的扭矩通常為低于5千克厘米。此外,大多數(shù)的R / C伺服電機的齒輪箱是塑料齒輪,容易造成由于重載齒輪的損壞。因此,一種具有扭矩超過20千克厘米和金屬制成的齒輪箱重型的R / C伺服電機,在實際應用中對機器人有吸引力。在本文中,我們提出了控制PWM信號,以便在不利的情況下使用高扭矩伺服電機能高負荷工作。 圖1:重型伺服電機系統(tǒng)的配置二 設計方案重型伺服馬達的系統(tǒng)配置示于圖1。碳刷直流減速電機作為控制電機,需要合適的減速比。馬達和齒輪箱被稱為電機組件,一個電位計被安裝在齒
5、輪箱作為輸出軸上位置反饋傳感器。如直流電動機轉動時,電位器為讓R/ C伺服電機與被控制的PWM信號兼容,在這個設計上,所提出的重型伺服電機的軸的位置也由PWM被控制。所述控制器是專用電用于產(chǎn)生一個適當?shù)腜WM信號,用于控制伺服電機軸的位置。該系統(tǒng)更詳細的每個部分討論如下文:(A) 電機組件 直流碳刷電機是一種用24伏作為額定電壓和62g -cm額定扭矩的控制電機。該電機可以在約5000 rpm的速度在額定電壓下轉動;變速箱用的減速比為1/200,它導致附屬的輸出扭矩額定轉速分別6公斤-厘米和28轉。精密電位器是采納反饋位置的傳感器。因為這種特殊設計而得到的結果是:一個內徑5毫米的電位,外徑為5
6、毫米變速箱軸。這是相同的電位內徑,使電位器可以牢固地連接到直流電動機組件,并且用作電動機的位置反饋傳感器。電動機外觀組件被示于圖2 ,在該齒輪的齒輪箱內部是由金屬材料和潤滑油,使得該組件可在重負荷應用中使用。圖2碳刷式直流電機和變速箱總成。 圖2:碳刷式直流電機和齒輪箱組件(B) PWM模塊常規(guī)的R / C伺服電機由PWM信號控制。在本文中,我們還采用PWM信號作為重型伺服電動機的位置指令,保持PWM指令和傳統(tǒng)的R / C伺服電機的相容性。該R / C伺服電動機是由一個PWM信號在其所期望的位置控制的。R / C伺服電機的軸位置和相應的所需的脈沖寬度被示于圖3 。 圖三:伺服電機軸的位置和所需
7、要的脈沖寬度用0.5毫秒到2.5毫秒的脈沖寬度時,R / C伺服電機可以從旋轉 - 90度至+ 90度的順時針方向。R / C伺服系統(tǒng)是結合位置反饋與精確目標位置的復雜的設備。在正常使用中,他們比較0.5-2.5毫秒,50Hz的輸入脈沖信號內部線性脈沖發(fā)生器的反饋伺服位置電位器控制。所不同的在脈沖寬度,該誤差信號,然后用一個脈沖展寬器,它提供了伺服控制放大獲得。的脈沖展寬器輸出通過一個H橋電路驅動伺服電機,關閉伺服環(huán)路,PWM模塊的結構示于圖4。 圖4:PWM模塊的配置雖然這不是很難設計出一種基于PWM反饋控制系統(tǒng),特殊用途設計的集成電路是更有利的,可避免使用較大的電路板。我們采用了最新的最新
8、的集成電路板三菱M51660L作為PWM控制器,用于重型伺服電動機2。M51660L被用于檢測反饋電位計的電阻變化并由此產(chǎn)生一個脈沖寬度對應于電動機位置作為反饋信號。反饋信號進行比較在位置控制系統(tǒng)的總結點的PWM位置指令。最后,誤差信號是來自求和點的輸出,以驅動輸出級和電動機被驅動的方向上,以減少位置誤差。這種專用芯片還設有一個小型的輪廓,少分立元件,以及成本低。然而, M51660L提供電流小于100毫安,這遠遠低于一個規(guī)定重型伺服電機,該電機繞組的電流可能高達數(shù)安培。因此,一電流放大器是需要驅動大電流的電機。一種電動機,應在順時針或逆時針的方向根據(jù)旋轉是否從位置指令和傳感器反饋中減去位置誤
9、差是正或負。一般情況下,H橋被采用為電流放大器,用于上述目的的一個輸出級。何時分立元件設計的電流放大器,至少四個功率晶體管和大量的使用電阻器是必需的,導致不僅許多電路板空間的需求,但也有幾個數(shù)的散熱片。從SGS湯姆遜雙極驅動芯片L298是用來作為一種替代,以避免這些當離散的組件用于缺陷,則沒有離散的組件是必需的,只有一小需要座位匯 3 。每個L298由兩個H橋,每個橋可以提供電流高達2安培。如果我們連接這兩個H橋的輸出端并聯(lián),輸出電流會加倍。換句話說,所設計的電流放大器可提供的電流高達4安培的重型伺服電機繞組。與M51660L除了L298 ,一個復雜的位置反饋控制系統(tǒng)簡化,結果在一個緊湊的模塊
10、。三。結果用于測試的設計伺服電機,電源,以及一個PWM脈沖產(chǎn)生是必要的。由于碳電刷直流電動機的額定電壓為24伏,電壓調節(jié)器是需要的調節(jié)在24V至5V邏輯電源,以便系統(tǒng)可以用一個電壓,而不是雙電壓操作供應。此外,雖然適當?shù)腜WM指令可以從一個微控制器,如產(chǎn)生AT89C2051從ATMEL 4中,使用定時器芯片LM555的一種更簡單的電路可以提供一個可調節(jié)的脈沖持續(xù)時間從0.5毫秒到2.5毫秒,以測試該重型伺服電機。圖。圖5示出一個555計時器,用于產(chǎn)生PWM脈沖。該方程為555時是簡單,易于使用。該等式(1)和(2)如下所示。大腿=0.693(R1 + R2)C TLOW=0.693R3C(2)
11、因為Rs是可變的,該時間信號為高時為0.52.5毫秒,定時值是足夠接近,只要有任何舵機工作為了驗證定位控制能力,無論是傳統(tǒng)的R / C伺服和這個設計重型伺服與所提到的555定時器電路進行測試。 圖5:555定時器產(chǎn)生的PWM信號 每個被測試電動機的輸出軸是加上一個單獨的角指示器。如果兩個馬達的PWM指令輸入端子是一起連接到555的PWM命令輸出,兩個馬達將獲得相同的角度命令。一數(shù)字示波器是用來監(jiān)視在PWM指令的脈沖寬度。的可變電阻PWM發(fā)生器逐漸調節(jié)和脈沖寬度范圍從0.5到2.5毫秒,它可以是從示波器監(jiān)視,并且兩個馬達轉動相應的角度,根據(jù)該脈沖寬度PWM指令的。另一方面,適當?shù)拿}沖寬度施加到測
12、試的響應不同的角度,如極左,極右和中心的位置反饋位置。它需要的重型伺服約0.7秒,從最左邊旋轉到中心位置時,比常規(guī)的R / C伺服,也就是大約0.2的長秒。四 討論在電機和齒輪箱組件,因為考慮并不是一種工業(yè)標準組件,輸出軸的近似直徑設計必須仔細根據(jù)內徑的電位。在該實驗中,通過修改獲得的與內徑的電位電子可變電阻器并不是一件容易的工作。對于大規(guī)模生產(chǎn),這種電位器必須可適應市場或者必須專門設計的。雖然電路可以通過多種方式來實現(xiàn),我們使用最少元件數(shù)的標準來設計這原型,結果是在短短的兩個組成部分, M51660L和L298中實現(xiàn)。這個原型需要兩個電壓, 24V的額定電壓和5V的邏輯電壓。為的簡單電源,單
13、電源考慮。在大多數(shù)情況下,電機的額定電壓高于邏輯供應,例如在這種情況下, 24伏。因此,用被嵌有電壓調節(jié)器的原型電機的額定電壓來調節(jié)邏輯電壓。該步驟的反應,電動機發(fā)出90度旋轉命令使其旋轉到所需的位置。在與其傳統(tǒng)的R / C伺服比較,在設計變速箱的還原率上高出0.7秒。但是,這個缺點可以在采用更快的響應直流電動機時,使用一個更復雜的控制算法,如比例和微分(PD) ,通過在伺服的設計控制環(huán)節(jié)。五 結束語在本文中,我們提出了一個重型伺服電機的機器人應用。因為駕駛輸出的H橋的容量高達4安培的工業(yè)直流電動機具有更高的繞組電流以及更高的扭矩可以被納入此驅動程序,并作為一個功能強大的驅動裝置。此外,在使用
14、重加載情況時,自擬伺服電機配與耐磨齒輪比傳統(tǒng)的R / C伺服電機更具耐用性。在進行精度定位的測試,伺服電機一旦接收到該PWM定位命令時,可以旋轉至所需位置。結果在本研究中也證明一個重型的R / C伺服電機比商業(yè)的R / C伺服電機可以提供更多的扭矩在機器人應用中。附件2:外文資料原文Proceedings of International Symposium on Automation and Mechatronics of Agricultural and BioproductionSystems, Vol. 2A Heavy Duty Servo Motor Design in Robot
15、 ApplicationsChi-Sheng Chen2, Ton-Tai Pan1, 2, Huihua Kenny Chiang1, Ping-Lin Fan2, Joe-Air Jiang3 1.Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan 2.Department of Electrical Engineering, Kuang-Wu Institute of Technology, Taipei, Taiwan 3.Department of Bio-industr
16、ial Mechatronics Engineering, National Taiwan University, Taipei, TaiwanAbstract This paper presents a design procedure of a heavy-duty servomotor for robot applications. The conventional remote control (R/C) servo is an ingenious device that allows remote, proportional actuation of mechanisms by th
17、e simple movement of a lever of a robot. Because of the control of a conventional R/C servomotor is easy and the cost of it is less expensive, the R/C servos are used in widespread areas. However, an R/C servomotor outputs less torque than required in many applications such as robots design and high
18、 torque requirement for remote control cars or planes. Thus, a motor with high torque which is easy to control, is favorable. In this paper, a DC gear motor is used as the controlled motor and a potentiometer was attached on the output shaft as a position feedback sensor. The proposed heavy duty R/C
19、 servomotor was tested with a mono-stable multi-vibrator, which generates 0.5 to 2.5 ms pulse width modulation (PWM) signals to drive the motor. Results of this study demonstrate that a heavy duty R/C servomotor can provide more torque in robot application than the commercial R/C servomotors.Keyword
20、s: Remote control motor, pulse width modulation, heavy duty, servomotor.I. Introduction In robot control applications, designers usually select either DC servomotor or brushless servomotor as the actuator to drive each joint. Both kinds of servomotors are expensive because the complexity of the driv
21、er system. Moreover, several servomotors are needed in a multi-joints robot design and will make the designed robot too expensive to practical usage. The R/C servo is a self-contained rotational positioning assembly originally designed to control an R/C aircraft or boat. The R/C servo is made up of
22、a DC motor,gear reduction, output shaft with position feedback, and a control personal computer board all built into a small rectangular enclosure. The R/C servomotor can be controlled with a PWM signal ranging from 0.5 to 2.5 ms to rotate the shaft from 90 degrees to 90 degrees. A robot joint drive
23、n by such an R/C servomotor is then easy to control. A robot control system can properly control these motors by sending appropriate PWM signals to each joint. However, most of the R/C servomotors on market are not qualified for high torque applications because the torque available is usually lower
24、than 5 kg-cm. Moreover, most of the gearboxes of the R/C servomotor are made of plastic gear, easily resulting in damage of the gears due to heavy load. Therefore, a heavy duty R/C servomotor, with a torque more than 20 kg-cm and a metal-made gearbox, is attractive to a robot designer for practical
25、usage.In this paper, we present a high torque servomotor controlled with a PWM signal so as to be used in a high load or an adverse circumstances. II. Design SchemeThe system configuration of the heavy-duty servomotor is illustrated in Fig.1. A carbon-brush DC gear motor is used as the controlled mo
26、tor. For the purpose of increasing motor torque, a gearbox with a suitable gear reduction ratio is needed. The motor and the gearbox are termed as motor assembly. On the other hand, a potentiometer was attached on output shaft of the gearbox as a position feedback sensor. As the DC motor rotates, th
27、e resistance of the potentiometer varies accordingly to a value corresponding to the shaft position of the motor assembly. For the compatibility with an R/C servo-motor that is controlled with PWM signal, the shaft position of the proposed heavy-duty servomotor is also controlled by a PWM signal in
28、this design. The controller is a dedicated circuit for generating a proper PWM signal when controlling the shaft position of the servomotor. Each part of the system is discussed in more details below.(A). Motor assembly A DC carbon-brush motor with a rated voltage of 24 volts and a rated torque of 6
29、2 g-cm is used as the controlled motor. This motor can rotate at a speed about 5000 rpm under the rated voltage; a gearbox with a reduction ratio 1/200 is attached from the output shaft of the DC motor, which resulting in an output torque and rated speed of 6 kg-cm and 28 rpm, respectively. A precis
30、ion potentiometer was adopted as a position sensor for feedback. However, the potentiometer is different from a general-purpose variable resistor; the original shaft attached to the wiper was removed. As a result of this special design, a potentiometer with an inner diameter of 5 mm is obtained. The
31、 outer diameter of the gearbox shaft is 5 mm, which is the same as the inner diameter of the potentiometer, so that the potentiometer can firmly attach to the DC motor assembly and serves as a position feedback sensor of the motor. The appearance of the motor assembly was shown in Fig. 2, in which g
32、ears inside the gearbox are made of metal materials and filled with lubricating oil so that this assembly can be used in heavy-duty applications. (B). PWM module The conventional R/C servomotors are controlled by a PWM signal. In this paper, we also adopt PWM signal as the position command for the h
33、eavy-duty servomotor, keeping the compatibility of the PWM command protocol for both conventional R/C servomotors and this designed servomotors. TheR/C servomotor is controlled by a PWM signal, which can direct the motor to a desired position according to the width of the pulse. The shaft positions
34、of the R/C servomotor and the corresponding required pulse widths are illustrated in Fig. 3. With a 0.5 ms to 2.5 ms pulse width, the R/C servomotor can rotate from 90 degrees to + 90 degrees clockwise 1. R/C servos are fairly sophisticated devices that incorporate position feedback with a goal to p
35、rovide precise position control. In normal usage, they compare the 0.5-2.5 ms, 50 Hz input pulse signal with an internal linear pulse generator controlled by the feedback servo position potentiometer. The difference in pulse width, the error signal, is then amplified with a pulse stretcher that prov
36、ides the servo control gain. The pulse stretcher output drives the servomotor through an H-bridge circuit to close the servo loop. The configuration of the PWM module is depicted in Fig. 4. Although it is not difficult to design a PWM based feedback control system, a special purpose designed IC is m
37、ore favorable that a large circuit board can be avoided. We adopted an up-to-date ntegrated circuit M51660L from Mitsubishi as the PWM controller for the heavy-duty servomotor 2. M51660L was used to detect the resistance variation of the feedback potentiometer and thus generate a pulse width corresp
38、onding to motor position as a feedback signal. A feedback signal was compared with PWM position command at the summing point of the position control system. Finally, an error signal was output from the summing point to drive the output stage and the motor was driven in a direction to reduce the posi
39、tion error. This dedicated chip also features a small outline, less discrete components as well as low cost. However, M51660L provides a current less than 100 mA, which is far below the requirement for a heavy-duty servomotor that the current of the motor windings may be up to several amperes. There
40、fore, a current amplifier is necessary to drive a high current motor. A motor should rotate in either clockwise or counterclockwise direction according to whether the position error subtracted from position command and sensor feedback is positive or negative. Generally, an H-bridge is adopted as an
41、output stage of the current amplifier for the above-mentioned purpose. When discrete components are used in designing the current amplifier, at least four power transistors and a lot of resistors are required, resulting in the needs of not only many circuit board space but also several counts of hea
42、t sink. A bipolar driving chip L298 from SGS Thomson is used as an alternative to avoid those drawbacks when discrete components are used, then no discrete components are required and only a small seat-sink is needed 3. Each L298 consists of two H-bridges and each bridge can provides a current up to
43、 2 amperes. If we connect the output terminals of these two H-bridges in parallel, the output current will be doubled. In other words, the designed current amplifier can provide a current up to 4 amperes for thewindings of heavy-duty servomotors. With M51660L in addition to L298, a complicated posit
44、ion feedback control system is simplified and results in a compact module.III. Results For testing the designed servomotor, a power supply as well as a PWM pulse generator is necessary. Since the rated voltage of the carbon-brush DC motor is 24 volts, a voltage regulator is needed to regulate the 24
45、V to a 5V logic supply so that the system can operate with a single voltage instead of dual voltage supply. Moreover, although a proper PWM command can be generated from a micro-controller, such as AT89C2051 from ATMEL 4, a more simple circuit using a timer chip LM555 can provide an adjustablepulse
46、duration ranging from 0.5 ms to 2.5 ms so as to test the heavy-duty servomotor. Fig. 5 depicts a 555 timer for generating PWM pulses. The equations for the 555 timer are simple and easy to use. The equations (1) and (2) are shown as follows.THIGH = 0.693 (R1 + R2) C (1)TLOW = 0.693 R3 C (2)Since Rs
47、is variable, the time the signal is high will vary from 0.5 to 2.5 ms, the timing values are close enough to work with just about any servos. To verify the positioning control ability, both the conventional R/C servo and this designed heavy-duty servo are tested with the mentioned 555 timer circuit.
48、 The output shaft of each tested motor is coupled with an individual angle indicator. If the PWM command input terminal of both motors areconnect together to a 555 PWM command output, both motors will receive the same angle command. A digital oscilloscope is used to monitor the pulse width of the PW
49、M command. The variable resistor of the PWM generator is adjusted gradually and the pulse width ranges from 0.5 to 2.5 ms, which can be monitored from the oscilloscope, and both motors rotate to the corresponding angle according to the pulse width of the PWM command. On the other hand, proper pulse
50、width was applied to test the response of the position feedback of different angles such as extreme left, extreme right and center position. It takes about 0.7 seconds for the heavy-duty servo to rotate from extreme left to centered position, longer than that of a conventional R/C servo, which is ab
51、out 0.2 seconds. IV. Discussion In the design of the motor and gearbox assembly, approximate diameter of output shaft must under carefully consideration since a potentiometer with an inner diameter is not an industrial standard component. In this experiment, the potentiometer with inner diameter is
52、obtained by modifying an electronic variable resistor and the modification is not an easy work. For the purpose of mass production, this kind of potentiometers must be available from the market or must be specially designed. Although the circuitry can be achieved in many ways, we use a criterion of
53、minimal component counts to design thisprototype and results in an implementation of just two components, M51660L and L298. This prototype requires two voltages, 24V for the motor and 5V for the logic. For the simplicity of the power supply, a single power supply is considered. The motor rated voltage is higher than the logic supply in most circumstance such as 24 volts in this case. Therefore, the pr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽省阜陽市阜南實驗中學2024-2025學年高二下學期第二次階段性檢測(期中)地理試卷(含答案)
- 2025年Android資深開發(fā)者告訴你:簡歷這樣寫絕對吸引面試官眼球面試電話接到手軟
- 2025年android性能優(yōu)化工具!原生Android開發(fā)的路該怎么走?Android校招面試指南
- 2024-2025學年下學期高一生物人教版期末必刷??碱}之自然選擇與適應的形成
- 建筑施工特種作業(yè)-樁機操作工真題庫-4
- 色彩靜物構圖題目及答案
- 3 3 導數(shù)的綜合應用-2026版53高考數(shù)學總復習A版精煉
- 2023-2024學年四川省樂山市高二下學期期末考試數(shù)學試題(解析版)
- 2024-2025學年四川省廣安市高三第一次診斷性考試語文試題(解析版)
- 2024-2025學年山東省聊城市某校高一下學期第一次月考語文試題(解析版)
- 實驗室通風系統(tǒng)工程施工方案
- 慢性活動性EB病毒病診治專家共識(2025版)解讀
- 2025年入團考試常見問題及試題答案
- 2025浙江杭州市科創(chuàng)集團有限公司招聘10人筆試參考題庫附帶答案詳解
- 日語水平考試試題及答案
- 安徽省2023~2024學年新高一數(shù)學自主招生考試試題含答案
- 冠心病患者非心臟手術麻醉管理專家共識
- 嘉興市重點中學2025年初三沖刺押題(最后一卷)英語試題試卷含答案
- 嬰幼兒護理的重要知識點試題及答案
- 水電安裝施工合同范本7篇
- 人防車位使用權轉讓協(xié)議一次性終
評論
0/150
提交評論