




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上函數(shù)的單調(diào)性與極值教案【教學(xué)目標(biāo)】:正確理解利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的原理;掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法;【教學(xué)重點】:利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性;【教學(xué)難點】:利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性【教學(xué)過程】:一 引入:以前,我們用定義來判斷函數(shù)的單調(diào)性.在假設(shè)x1<x2的前提下,比較f(x1)<f(x2)與的大小,在函數(shù)y=f(x)比較復(fù)雜的情況下,比較f(x1)與f(x2)的大小并不很容易.如果利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性就比較簡單.二 新課講授1 函數(shù)單調(diào)性我們已經(jīng)知道,曲線y=f(x)的切線的斜率就是函數(shù)y=f(x)的導(dǎo)數(shù).從函數(shù)的圖像可以看到:在區(qū)間(2,)內(nèi)
2、,切線的斜率為正,函數(shù)y=f(x)的值隨著x的增大而增大,即>0時,函數(shù)y=f(x) 在區(qū)間(2,)內(nèi)為增函數(shù);在區(qū)間(,2)內(nèi),切線的斜率為負(fù),函數(shù)y=f(x)的值隨著x的增大而減小,即0時,函數(shù)y=f(x) 在區(qū)間(,2)內(nèi)為減函數(shù).定義:一般地,設(shè)函數(shù)y=f(x) 在某個區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個區(qū)間內(nèi)>0,那么函數(shù)y=f(x) 在為這個區(qū)間內(nèi)的增函數(shù);,如果在這個區(qū)間內(nèi)<0,那么函數(shù)y=f(x) 在為這個區(qū)間內(nèi)的減函數(shù)。例1 確定函數(shù)在哪個區(qū)間內(nèi)是增函數(shù),哪個區(qū)間內(nèi)是減函數(shù)。y例2 確定函數(shù)的單調(diào)區(qū)間。x022 極大值與極小值觀察例2的圖可以看出,函數(shù)在X=0的函數(shù)值比
3、它附近所有各點的函數(shù)值都大,我們說f(0)是函數(shù)的一個極大值;函數(shù)在X=2的函數(shù)值比它附近所有各點的函數(shù)值都小,我們說f(0)是函數(shù)的一個極小值。一般地,設(shè)函數(shù)y=f(x)在及其附近有定義,如果的值比附近所有各點的函數(shù)值都大,我們說f()是函數(shù)y=f(x)的一個極大值;如果的值比附近所有各點的函數(shù)值都小,我們說f()是函數(shù)y=f(x)的一個極小值。極大值與極小值統(tǒng)稱極值。在定義中,取得極值的點稱為極值點,極值點是自變量的值,極值指的是函數(shù)值。請注意以下幾點:()極值是一個局部概念。由定義,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是最大或最小。并不意味著它在函數(shù)的整個的定義域內(nèi)最大或最小。(
4、)函數(shù)的極值不是唯一的。即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個。oaX1X2X3X4baxy()極大值與極小值之間無確定的大小關(guān)系。即一個函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點,是極小值點,而>。()函數(shù)的極值點一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點不能成為極值點。而使函數(shù)取得最大值、最小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點。由上圖可以看出,在函數(shù)取得極值處,如果曲線有切線的話,則切線是水平的,從而有。但反過來不一定。如函數(shù),在處,曲線的切線是水平的,但這點的函數(shù)值既不比它附近的點的函數(shù)值大,也不比它附近的點的函數(shù)值小。假設(shè)使,那么在什么情況下是的極值點呢?
5、oaX0baxyoaX0baxy如上左圖所示,若是的極大值點,則兩側(cè)附近點的函數(shù)值必須小于。因此,的左側(cè)附近只能是增函數(shù),即。的右側(cè)附近只能是減函數(shù),即,同理,如上右圖所示,若是極小值點,則在的左側(cè)附近只能是減函數(shù),即,在的右側(cè)附近只能是增函數(shù),即,從而我們得出結(jié)論:若滿足,且在的兩側(cè)的導(dǎo)數(shù)異號,則是的極值點,是極值,并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點,是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點,是極小值。xoy例3 求函數(shù)的極值。三 小結(jié)1求極值常按如下步驟: 確定函數(shù)的定義域; 求導(dǎo)數(shù); 求方程=0的根,這些根也稱為可能極值點; 檢查在方程的根的左右兩側(cè)的符號,確定極值點。(最好通過列表法)四 鞏固練習(xí)1 確定下列函數(shù)的單調(diào)區(qū)間:(1) (2)2 求下列函數(shù)的極值(1) (2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)300萬只汽車前大燈智項目初步設(shè)計(范文參考)
- 年產(chǎn)20萬噸本色漿替代廢紙漿項目可行性研究報告(參考模板)
- 納米銀導(dǎo)電膜建設(shè)項目可行性研究報告(模板范文)
- 煤基高端新材料項目實施方案
- 老舊小區(qū)加裝電梯項目可行性研究報告(模板)
- 老舊橋梁加固工程實施方案(僅供參考)
- 焦?fàn)t余熱利用裝置改造項目可行性研究報告
- 環(huán)保型植保產(chǎn)品建設(shè)項目實施方案
- 海洋科技創(chuàng)新的戰(zhàn)略規(guī)劃與路徑
- 工業(yè)園區(qū)標(biāo)準(zhǔn)化廠房建設(shè)項目實施方案
- 向上向善見賢思齊投身崇德向善的道德實踐
- 人工智能 第2版 課件 AI12類腦智能
- 初中八年級物理課件-《浮力》(全國一等獎)
- 《病歷書寫基本規(guī)范》課件
- 單管塔施工方案
- 監(jiān)理大綱-針對本工程的特點難點控制及建議
- 諾如病毒腸炎護(hù)理查房
- 小學(xué)生的一天
- GB/T 43299-2023機動車玻璃電加熱性能試驗方法
- 人教版八年級物理下冊 實驗題01 力與運動的實驗(含答案詳解)
- 混凝土質(zhì)量管理體系
評論
0/150
提交評論