




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、§121 軸對(duì)稱§1211 軸對(duì)稱(一) 教學(xué)目標(biāo) 1在生活實(shí)例中認(rèn)識(shí)軸對(duì)稱圖 2分析軸對(duì)稱圖形,理解軸對(duì)稱的概念 教學(xué)重點(diǎn) 軸對(duì)稱圖形的概念 教學(xué)難點(diǎn) 能夠識(shí)別軸對(duì)稱圖形并找出它的對(duì)稱軸 教學(xué)過(guò)程 創(chuàng)設(shè)情境,引入新課 我們生活在一個(gè)充滿對(duì)稱的世界中,許多建筑物都設(shè)計(jì)成對(duì)稱形,藝術(shù)作品的創(chuàng)作往往也從對(duì)稱角度考慮,自然界的許多動(dòng)植物也按對(duì)稱形生長(zhǎng),中國(guó)的方塊字中些也具有對(duì)稱性對(duì)稱給我們帶來(lái)多少美的感受!初步掌握對(duì)稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧 軸對(duì)稱是對(duì)稱中重要的一種,從這節(jié)課開(kāi)始,我們來(lái)學(xué)習(xí)第十四章:軸對(duì)稱今天我們來(lái)研究第一
2、節(jié),認(rèn)識(shí)什么是軸對(duì)稱圖形,什么是對(duì)稱軸 導(dǎo)入新課 出示課本的圖片,觀察它們都有些什么共同特征 這些圖形都是對(duì)稱的這些圖形從中間分開(kāi)后,左右兩部分能夠完全重合 小結(jié):對(duì)稱現(xiàn)象無(wú)處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,甚至日常生活用品,人們都可以找到對(duì)稱的例子現(xiàn)在同學(xué)們就從我們生活周圍的事物中來(lái)找一些具有對(duì)稱特征的例子 我們的黑板、課桌、椅子等 我們的身體,還有飛機(jī)、汽車、楓葉等都是對(duì)稱的 如課本的圖1212,把一張紙對(duì)折,剪出一個(gè)圖案(折痕處不要完全剪斷),再打開(kāi)這張對(duì)折的紙,就剪出了美麗的窗花觀察得到的窗花和圖1211中的圖形,你能發(fā)現(xiàn)它們有什么共同的特點(diǎn)嗎? 窗花可以沿折痕對(duì)折,使
3、折痕兩旁的部分完全重合不僅窗花可以沿一條直線對(duì)折,使直線兩旁重合,上面圖1211中的圖形也可以沿一條直線對(duì)折,使直線兩旁的部分重合 結(jié)論:如果一個(gè)圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸這時(shí),我們也說(shuō)這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱 了解了軸對(duì)稱圖形及其對(duì)稱軸的概念后,我們來(lái)做一做 取一張質(zhì)地較硬的紙,將紙對(duì)折,并用小刀在紙的中央隨意刻出一個(gè)圖案,將紙打開(kāi)后鋪平,你得到兩個(gè)成軸對(duì)稱的圖案了嗎?與同伴進(jìn)行交流 結(jié)論:位于折痕兩側(cè)的圖案是對(duì)稱的,它們可以互相重合 由此可以得到軸對(duì)稱圖形的特征:一個(gè)圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合 接
4、下來(lái)我們來(lái)探討一個(gè)有關(guān)對(duì)稱軸的問(wèn)題有些軸對(duì)稱圖形的對(duì)稱軸只有一條,但有的軸對(duì)稱圖形的對(duì)稱軸卻不止一條,有的軸對(duì)稱圖形的對(duì)稱軸甚至有無(wú)數(shù)條。 下列各圖,你能找出它們的對(duì)稱軸嗎? 結(jié)果:圖(1)有四條對(duì)稱軸;圖(2)有四條對(duì)稱軸;圖(3)有無(wú)數(shù)條對(duì)稱軸;圖(4)有兩條對(duì)稱軸;圖(5)有七條對(duì)稱軸 (1) (2) (3) (4) (5) 展示掛圖,大家想一想,你發(fā)現(xiàn)了什么? 像這樣,把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱,這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn) 隨堂練習(xí) (一)課本P147練習(xí) (二)P148練習(xí) 課時(shí)小結(jié) 這節(jié)課
5、我們主要認(rèn)識(shí)了軸對(duì)稱圖形,了解了軸對(duì)稱圖形及有關(guān)概念,進(jìn)一步探討了軸對(duì)稱的特點(diǎn),區(qū)分了軸對(duì)稱圖形和兩個(gè)圖形成軸對(duì)稱 作業(yè) (一)課本習(xí)題1211、2、6、7、8題 課后作業(yè):課堂感悟與探究 活動(dòng)與探究 課本P148思考 成軸對(duì)稱的兩個(gè)圖形全等嗎?如果把一個(gè)軸對(duì)稱圖形沿對(duì)稱軸分成兩個(gè)圖形,那么這兩個(gè)圖形全等嗎?這兩個(gè)圖形對(duì)稱嗎? 過(guò)程:在硬紙板上畫(huà)兩個(gè)成軸對(duì)稱的圖形,再用剪刀將這兩個(gè)圖形剪下來(lái)看是否重合再在硬紙板上畫(huà)出一個(gè)軸對(duì)稱圖形,然后將該圖形剪下來(lái),再沿對(duì)稱軸剪開(kāi),看兩部分是否能夠完全重合 結(jié)論:成軸對(duì)稱的兩個(gè)圖形全等如果把一個(gè)軸對(duì)稱圖形沿對(duì)稱軸分成兩個(gè)圖形,這兩個(gè)圖形全等,并且也是成軸對(duì)稱
6、的 軸對(duì)稱是說(shuō)兩個(gè)圖形的位置關(guān)系,而軸對(duì)稱圖形是說(shuō)一個(gè)具有特殊形狀的圖形 軸對(duì)稱的兩個(gè)圖形和軸對(duì)稱圖形,都要沿某一條直線折疊后重合;如果把軸對(duì)稱圖形沿對(duì)稱軸分成兩部分,那么這兩個(gè)圖形就關(guān)于這條直線成軸對(duì)稱;反過(guò)來(lái),如果把兩個(gè)成軸對(duì)稱的圖形看成一個(gè)整體,那么它就是一個(gè)軸對(duì)稱圖形 板書(shū)設(shè)計(jì) §1211 軸對(duì)稱(一) 一、軸對(duì)稱:如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠完全重合,這個(gè)圖形就叫軸對(duì)稱圖形,這條直線叫對(duì)稱軸 二、兩個(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱 §1212 軸對(duì)稱(二) 教學(xué)目標(biāo) 1
7、了解兩個(gè)圖形成軸對(duì)稱性的性質(zhì),了解軸對(duì)稱圖形的性質(zhì) 2探究線段垂直平分線的性質(zhì) 3經(jīng)歷探索軸對(duì)稱圖形性質(zhì)的過(guò)程,進(jìn)一步體驗(yàn)軸對(duì)稱的特點(diǎn),發(fā)展空間觀察 教學(xué)重點(diǎn) 1軸對(duì)稱的性質(zhì) 2線段垂直平分線的性質(zhì) 教學(xué)難點(diǎn) 體驗(yàn)軸對(duì)稱的特征 教學(xué)過(guò)程 創(chuàng)設(shè)情境,引入新課 上節(jié)課我們共同探討了軸對(duì)稱圖形,知道現(xiàn)實(shí)生活中由于有軸對(duì)稱圖形,而使得世界非常美麗那么大家想一想,什么樣的圖形是軸對(duì)稱圖形呢? 今天繼續(xù)來(lái)研究軸對(duì)稱的性質(zhì) 導(dǎo)入新課觀看投影并思考 如圖,ABC和ABC關(guān)于直線MN對(duì)稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對(duì)稱點(diǎn),線段AA、BB、CC與直線MN有什么關(guān)系? 圖中A、A是對(duì)稱點(diǎn),AA與MN垂直,BB
8、和CC也與MN垂直 AA、BB和CC與MN除了垂直以外還有什么關(guān)系嗎? ABC與ABC關(guān)于直線MN對(duì)稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對(duì)稱點(diǎn),設(shè)AA交對(duì)稱軸MN于點(diǎn)P,將ABC和ABC沿MN對(duì)折后,點(diǎn)A與A重合,于是有AP=AP,MPA=MPA=90°所以AA、BB和CC與MN除了垂直以外,MN還經(jīng)過(guò)線段AA、BB和CC的中點(diǎn) 對(duì)稱軸所在直線經(jīng)過(guò)對(duì)稱點(diǎn)所連線段的中點(diǎn),并且垂直于這條線段我們把經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線 自己動(dòng)手畫(huà)一個(gè)軸對(duì)稱圖形,并找出兩對(duì)稱點(diǎn),看一下對(duì)稱軸和兩對(duì)稱點(diǎn)連線的關(guān)系 我們可以看出軸對(duì)稱圖形與兩個(gè)圖形關(guān)于直線對(duì)稱一樣,對(duì)稱
9、軸所在直線經(jīng)過(guò)對(duì)稱點(diǎn)所連線段的中點(diǎn),并且垂直于這條線段 歸納圖形軸對(duì)稱的性質(zhì): 如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)稱點(diǎn)所連線段的垂直平分線類似地,軸對(duì)稱圖形的對(duì)稱軸是任何一對(duì)對(duì)稱點(diǎn)所連線段的垂直平分線 下面我們來(lái)探究線段垂直平分線的性質(zhì) 探究1如下圖木條L與AB釘在一起,L垂直平分AB,P1,P2,P3,是L上的點(diǎn),分別量一量點(diǎn)P1,P2,P3,到A與B的距離,你有什么發(fā)現(xiàn)? 1用平面圖將上述問(wèn)題進(jìn)行轉(zhuǎn)化,先作出線段AB,過(guò)AB中點(diǎn)作AB的垂直平分線L,在L上取P1、P2、P3,連結(jié)AP1、AP2、BP1、BP2、CP1、CP2 2作好圖后,用直尺量出AP1、AP2、BP1、
10、BP2、CP1、CP2討論發(fā)現(xiàn)什么樣的規(guī)律 探究結(jié)果: 線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等即AP1=BP1,AP2=BP2, 證明 證法一:利用判定兩個(gè)三角形全等 如下圖,在APC和BPC中, APCBPC PA=PB. 證法二:利用軸對(duì)稱性質(zhì) 由于點(diǎn)C是線段AB的中點(diǎn),將線段AB沿直線L對(duì)折,線段PA與PB是重合的,因此它們也是相等的 帶著探究1的結(jié)論我們來(lái)看下面的問(wèn)題 探究2如右圖用一根木棒和一根彈性均勻的橡皮筋,做一個(gè)簡(jiǎn)易的“弓”,“箭”通過(guò)木棒中央的孔射出去,怎么才能保持出箭的方向與木棒垂直呢?為什么? 活動(dòng):1用平面圖形將上述問(wèn)題進(jìn)行轉(zhuǎn)化作線段AB,取其中點(diǎn)P,過(guò)P作L
11、,在L上取點(diǎn)P1、P2,連結(jié)AP1、AP2、BP1、BP2會(huì)有以下兩種可能 2討論:要使L與AB垂直,AP1、AP2、BP1、BP2應(yīng)滿足什么條件? 探究過(guò)程: 1如上圖甲,若AP1BP1,那么沿L將圖形折疊后,A與B不可能重合,也就是APP1BPP1,即L與AB不垂直 2如上圖乙,若AP1=BP1,那么沿L將圖形折疊后,A與B恰好重合,就有APP1=BPP1,即L與AB重合當(dāng)AP2=BP2時(shí),亦然 探究結(jié)論: 與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上也就是說(shuō)在探究2圖中,只要使箭端到弓兩端的端點(diǎn)的距離相等,就能保持射出箭的方向與木棒垂直 師上述兩個(gè)探究問(wèn)題的結(jié)果就給出了線段垂
12、直平分線的性質(zhì),即:線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等;反過(guò)來(lái),與這條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)都在它的垂直平分線上所以線段的垂直平分線可以看成是與線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 隨堂練習(xí)課本P121練習(xí) 1、2 課時(shí)小結(jié) 這節(jié)課通過(guò)探索軸對(duì)稱圖形對(duì)稱性的過(guò)程,了解了線段的垂直平分線的有關(guān)性質(zhì),同學(xué)們應(yīng)靈活運(yùn)用這些性質(zhì)來(lái)解決問(wèn)題 課后作業(yè) (一)課本習(xí)題1213、4、9題 課后作業(yè):課堂感悟與探究活動(dòng)與探究 如圖甲,ABC和ABC關(guān)于直線L對(duì)稱,延長(zhǎng)對(duì)應(yīng)線段AB和AB,兩條延長(zhǎng)線相交嗎?交點(diǎn)與對(duì)稱軸L有什么關(guān)系?延長(zhǎng)其他對(duì)應(yīng)線段呢?在圖乙中,AC與AC又如何呢?再找?guī)讉€(gè)成軸對(duì)稱的
13、圖形觀察一下,能發(fā)現(xiàn)什么規(guī)律嗎? 過(guò)程:在圖甲中,AB與AB不平行,所以它們肯定會(huì)相交下面來(lái)研究交點(diǎn)與對(duì)稱軸L的關(guān)系 問(wèn)題1:點(diǎn)和直線有幾種位置關(guān)系? 有兩種一種是點(diǎn)不在直線上,另一種是點(diǎn)在直線上 問(wèn)題2:先來(lái)假設(shè)一下交點(diǎn)不在對(duì)稱軸L上,看是否成立 如果交點(diǎn)(P)不在對(duì)稱軸L上,那么在L的另一側(cè)一定有另外一點(diǎn)(P)與交點(diǎn)(P)關(guān)于直線L對(duì)稱,且該點(diǎn)(P)也是兩延長(zhǎng)線的交點(diǎn)但是由于兩條直線相交只可能有一個(gè)交點(diǎn),所以這兩點(diǎn)是重合的即交點(diǎn)(P)只能在對(duì)稱軸L上所以交點(diǎn)一定在對(duì)稱軸上延長(zhǎng)其他的對(duì)應(yīng)線段,結(jié)果也一樣 再看圖乙,我們來(lái)討論下一個(gè)問(wèn)題 AC與AC是平行的,它們的兩條延長(zhǎng)線也不會(huì)相交 結(jié)論:成軸對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段的延長(zhǎng)線如果相交,交點(diǎn)一定在對(duì)稱軸上;對(duì)應(yīng)線段的延長(zhǎng)線如果不相交,也就是對(duì)應(yīng)線段所在的直線平行,那么它們也與對(duì)稱軸平行 板書(shū)設(shè)計(jì) §1212
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)理技能測(cè)試題庫(kù)及答案2025
- 2025年執(zhí)業(yè)醫(yī)師知識(shí)點(diǎn)試題及答案
- 行政法學(xué)相關(guān)法律的整合試題與答案
- 2025年經(jīng)濟(jì)法考生熱點(diǎn)試題及答案
- 完整的2025年文化概論試題答案
- 2025年衛(wèi)生資格考試在線復(fù)習(xí)試題與答案
- 政府創(chuàng)新與社會(huì)發(fā)展的關(guān)系的試題及答案
- 職業(yè)生涯中應(yīng)注意的事項(xiàng)試題及答案
- 2025年執(zhí)業(yè)護(hù)士考試策略與試題答案
- 行政法與社會(huì)信任的關(guān)系試題與答案
- 校車駕駛員交通安全培訓(xùn)
- 飛機(jī)維修員入門教程
- 超聲引導(dǎo)下神經(jīng)阻滯下肢篇
- 2024屆高三英語(yǔ)二輪專題復(fù)習(xí):關(guān)于水中或雨中脫困脫險(xiǎn)的讀后續(xù)寫(xiě)練習(xí)寫(xiě)作素材
- 《如何處理人際關(guān)系》課件
- 中國(guó)帶狀皰疹診療專家共識(shí)2023版
- Part6 Unit1 Travel 課件-【中職專用】高一英語(yǔ)同步 課堂(高教版2021·基礎(chǔ)模塊2)(2023修訂版)
- 《旋轉(zhuǎn)變壓器 》課件
- 個(gè)人信息保護(hù)與隱私權(quán)益
- 皮下脂肪瘤學(xué)習(xí)課件
- 裝修常用數(shù)據(jù)手冊(cè)(空間布局和尺寸)
評(píng)論
0/150
提交評(píng)論