




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、阿凡題,手機(jī)上的智能解題機(jī)器人,全新作業(yè)神器 高中高一數(shù)學(xué)必修1各章知識(shí)點(diǎn)總結(jié)第一章 集合與函數(shù)概念一、集合有關(guān)概念1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。2、集合的中元素的三個(gè)特性:1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性.3、集合的表示:(1) 如我校的籃球隊(duì)員,太平洋,大西洋,印度洋,北冰洋(2). 用拉丁字母表示集合:A=我校的籃球隊(duì)員,B=1,2,3,4,54集合的表示方法:列舉法與描述法。常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集) 記作:N正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R5.關(guān)于“屬于”的概念集合的元素通常用
2、小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 aÏA列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。6、集合的分類(lèi):(1)有限集 含有有限個(gè)元素的集合(2)無(wú)限集 含有無(wú)限個(gè)元素的集合(3)空集 不含任何元素的集合例:x|x2=5=二、集合間的基本關(guān)系1.“包含”關(guān)系子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2“
3、相等”關(guān)系:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B 任何一個(gè)集合是它本身的子集。即AÍA如果AÍB,且A¹ B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)如果 AÍB, BÍC ,那么 AÍC 如果AÍB 同時(shí) BÍA 那么A=B3. 不含任何元素的集合叫做空集,記為規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的運(yùn)算1交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,
4、B的交集記作AB(讀作A交B),即AB=x|xA,且xB2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:AB(讀作A并B),即AB=x|xA,或xB3、交集與并集的性質(zhì):AA = A, A= , AB = BA,AA = A,A= A ,AB = BA.4、全集與補(bǔ)集(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)記作: CSA 即 CSA =x | xÎS且 xÏASCsAA(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)
5、全集。通常用U來(lái)表示。(3)性質(zhì):CU(C UA)=A (C UA)A= (CUA)A=U二、函數(shù)的有關(guān)概念1函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:AB為從集合A到集合B的一個(gè)函數(shù)記作: y=f(x),xA其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xA 叫做函數(shù)的值域能使函數(shù)式有意義的實(shí)數(shù)x的集合稱(chēng)為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開(kāi)方數(shù)不小于零; (
6、3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零 (7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.2.構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域再注意:(1)由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱(chēng)這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。相同函數(shù)的判斷方法:表達(dá)式相同;定義域一致 (兩點(diǎn)必須同時(shí)具備)3區(qū)
7、間的概念(1)區(qū)間的分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;(2)無(wú)窮區(qū)間;(3)區(qū)間的數(shù)軸表示4映射 一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作“f:AB”給定一個(gè)集合A到B的映射,如果aA,bB.且元素a和元素b對(duì)應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象說(shuō)明:函數(shù)是一種特殊的映射,映射是一種特殊的對(duì)應(yīng),集合A、B及對(duì)應(yīng)法則f是確定的;對(duì)應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合A到集合B的對(duì)應(yīng),它與從B到A的對(duì)應(yīng)關(guān)系一般是不同的;對(duì)于映射
8、f:AB來(lái)說(shuō),則應(yīng)滿(mǎn)足:()集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;()集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);()不要求集合B中的每一個(gè)元素在集合A中都有原象。5.常用的函數(shù)表示法:解析法: 圖象法: 列表法:6.分段函數(shù) 在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。(1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集7函數(shù)單調(diào)性(1)設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說(shuō)f(x)在區(qū)
9、間D上是增函數(shù)。區(qū)間D稱(chēng)為y=f(x)的單調(diào)增區(qū)間 如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1<x2 時(shí),都有f(x1)f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱(chēng)為y=f(x)的單調(diào)減區(qū)間.注意: 函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);(2) 圖象的特點(diǎn) 如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A) 定義法:任取x1,x2D,且x1<x2; 作差f(x1)f
10、(x2); 變形(通常是因式分解和配方); 定號(hào)(即判斷差f(x1)f(x2)的正負(fù)); 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性) (B)圖象法(從圖象上看升降)_注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集.8函數(shù)的奇偶性(1)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么f(x)就叫做偶函數(shù)(2)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么f(x)就叫做奇函數(shù)注意: 函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒(méi)有奇偶性,也可能既是奇函數(shù)又是偶
11、函數(shù)。 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng))(3)具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟: 首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng); 確定f(x)與f(x)的關(guān)系; 作出相應(yīng)結(jié)論:若f(x) = f(x) 或 f(x)f(x) = 0,則f(x)是偶函數(shù);若f(x) =f(x) 或 f(x)f(x) = 0,則f(x)是奇函數(shù)9、函數(shù)的解析表達(dá)式(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間
12、的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.(2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時(shí),可用待定系數(shù)法;已知復(fù)合函數(shù)fg(x)的表達(dá)式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當(dāng)已知表達(dá)式較簡(jiǎn)單時(shí),也可用湊配法;若已知抽象函數(shù)表達(dá)式,則常用解方程組消參的方法求出f(x)。補(bǔ)充不等式的解法與二次函數(shù)(方程)的性質(zhì)1、a>0時(shí),2、配方:3、>0時(shí),()的兩個(gè)根為(),則, 4、=0時(shí),()的兩個(gè)等根為,則,無(wú)解,5、<0時(shí),()無(wú)解,則,無(wú)解6根與系數(shù)的關(guān)系若()的兩個(gè)根為則高中數(shù)學(xué)必修2知識(shí)點(diǎn)一、直線與方
13、程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°180°(2)直線的斜率定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),; 當(dāng)時(shí),; 當(dāng)時(shí),不存在。過(guò)兩點(diǎn)的直線的斜率公式: 注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(4)求直線的傾斜角可由
14、直線上兩點(diǎn)的坐標(biāo)先求斜率得到。(3)直線方程點(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。斜截式:,直線斜率為k,直線在y軸上的截距為b兩點(diǎn)式:()直線兩點(diǎn),截矩式:其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。一般式:(A,B不全為0)注意:各式的適用范圍 特殊的方程如:平行于x軸的直線:(b為常數(shù)); 平行于y軸的直線:(a為常數(shù)); (5)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系平行于已
15、知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))(二)過(guò)定點(diǎn)的直線系()斜率為k的直線系:,直線過(guò)定點(diǎn);()過(guò)兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。(6)兩直線平行與垂直當(dāng),時(shí),;注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。(7)兩條直線的交點(diǎn) 相交交點(diǎn)坐標(biāo)即方程組的一組解。方程組無(wú)解 ; 方程組有無(wú)數(shù)解與重合(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則 (9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離(10)兩平行直線距離公式在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。二、圓的方程1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,
16、定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。2、圓的方程(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;(2)一般方程當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為當(dāng)時(shí),表示一個(gè)點(diǎn); 當(dāng)時(shí),方程不表示任何圖形。(3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。3、直線與圓的位置關(guān)系:直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:(1)設(shè)直線,圓,圓心到l的距離為,則有;(2)設(shè)直線,圓,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,
17、令其中的判別式為,則有;注:如果圓心的位置在原點(diǎn),可使用公式去解直線與圓相切的問(wèn)題,其中表示切點(diǎn)坐標(biāo),r表示半徑。 (3)過(guò)圓上一點(diǎn)的切線方程:圓x2+y2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為 (課本命題)圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2 (課本命題的推廣)4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。設(shè)圓,兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;當(dāng)時(shí)兩圓外切,連心線過(guò)切
18、點(diǎn),有外公切線兩條,內(nèi)公切線一條;當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;當(dāng)時(shí),兩圓內(nèi)含; 當(dāng)時(shí),為同心圓。三、立體幾何初步1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征(1)棱柱:定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐定義:有一
19、個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等表示:用各頂點(diǎn)字母,如五棱錐幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。(3)棱臺(tái):定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等表示:用各頂點(diǎn)字母,如五棱臺(tái)幾何特征:上下底面是相似的平行多邊形 側(cè)面是梯形 側(cè)棱交于原棱錐的頂點(diǎn)(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體幾何特
20、征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開(kāi)圖是一個(gè)矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體幾何特征:底面是一個(gè)圓;母線交于圓錐的頂點(diǎn);側(cè)面展開(kāi)圖是一個(gè)扇形。(6)圓臺(tái):定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:上下底面是兩個(gè)圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面展開(kāi)圖是一個(gè)弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑。2、空間幾何體的三視圖定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左
21、向右)、俯視圖(從上向下)注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。3、空間幾何體的直觀圖斜二測(cè)畫(huà)法斜二測(cè)畫(huà)法特點(diǎn):原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。4、柱體、錐體、臺(tái)體的表面積與體積(1)幾何體的表面積為幾何體各個(gè)面的面積的和。(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線) (3)柱體、錐體、臺(tái)體的體積公式 (4)球體的表面積和體積公式:V= ; S=4、空
22、間點(diǎn)、直線、平面的位置關(guān)系(1)平面 平面的概念: A.描述性說(shuō)明; B.平面是無(wú)限伸展的; 平面的表示:通常用希臘字母、表示,如平面(通常寫(xiě)在一個(gè)銳角內(nèi));也可以用兩個(gè)相對(duì)頂點(diǎn)的字母來(lái)表示,如平面BC。 點(diǎn)與平面的關(guān)系:點(diǎn)A在平面內(nèi),記作;點(diǎn)不在平面內(nèi),記作點(diǎn)與直線的關(guān)系:點(diǎn)A的直線l上,記作:Al; 點(diǎn)A在直線l外,記作Al;直線與平面的關(guān)系:直線l在平面內(nèi),記作l;直線l不在平面內(nèi),記作l。(2)公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。 (即直線在平面內(nèi),或者平面經(jīng)過(guò)直線)應(yīng)用:檢驗(yàn)桌面是否平; 判斷直線是否在平面內(nèi)用符號(hào)語(yǔ)言表示公理1:(3)公理2
23、:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理2及其推論作用:它是空間內(nèi)確定平面的依據(jù) 它是證明平面重合的依據(jù)(4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線符號(hào):平面和相交,交線是a,記作a。符號(hào)語(yǔ)言:公理3的作用:它是判定兩個(gè)平面相交的方法。它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。(5)公理4:平行于同一條直線的兩條直線互相平行(6)空間直線與直線之間的位置關(guān)系 異面直線定義:不同在任何一個(gè)平面內(nèi)
24、的兩條直線 異面直線性質(zhì):既不平行,又不相交。 異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線 異面直線所成角:直線a、b是異面直線,經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線aa,bb,則把直線a和b所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°,若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。說(shuō)明:(1)判定空間直線是異面直線方法:根據(jù)異面直線的定義;異面直線的判定定理(2)在異面直線所成角定義中,空間一點(diǎn)O是任取的,而和點(diǎn)O的位置無(wú)關(guān)。求異面直線所成角步驟:A、利用定義構(gòu)造角,可固定一條,平移另
25、一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來(lái)求角(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。(8)空間直線與平面之間的位置關(guān)系直線在平面內(nèi)有無(wú)數(shù)個(gè)公共點(diǎn)三種位置關(guān)系的符號(hào)表示:a aA a(9)平面與平面之間的位置關(guān)系:平行沒(méi)有公共點(diǎn);相交有一條公共直線。b5、空間中的平行問(wèn)題(1)直線與平面平行的判定及其性質(zhì)線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。 線線平行線面平行線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直
26、線和交線平行。線面平行線線平行(2)平面與平面平行的判定及其性質(zhì)兩個(gè)平面平行的判定定理(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行(線面平行面面平行),(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。(線線平行面面平行),(3)垂直于同一條直線的兩個(gè)平面平行,兩個(gè)平面平行的性質(zhì)定理(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行線面平行)(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行線線平行)7、空間中的垂直問(wèn)題(1)線線、面面、線面垂直的定義兩條異面直線的垂直:如果兩條異面直線所成的角是直角
27、,就說(shuō)這兩條異面直線互相垂直。線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。(2)垂直關(guān)系的判定和性質(zhì)定理線面垂直判定定理和性質(zhì)定理判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。面面垂直的判定定理和性質(zhì)定理判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于
28、他們的交線的直線垂直于另一個(gè)平面。9、空間角問(wèn)題(1)直線與直線所成的角兩平行直線所成的角:規(guī)定為。兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。(2)直線和平面所成的角平面的平行線與平面所成的角:規(guī)定為。 平面的垂線與平面所成的角:規(guī)定為。平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。求斜線與平面所成角的思路類(lèi)似于求異面直線所成角:“一作,二證,三計(jì)算”
29、。在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。(3)二面角和二面角的平面角二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直
30、,那么所成的二面角為直二面角求二面角的方法定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角7、空間直角坐標(biāo)系(1)定義:如圖,是單位正方體.以A為原點(diǎn),分別以O(shè)D,O,OB的方向?yàn)檎较颍⑷龡l數(shù)軸。這時(shí)建立了一個(gè)空間直角坐標(biāo)系Oxyz.1)O叫做坐標(biāo)原點(diǎn) 2)x 軸,y軸,z軸叫做坐標(biāo)軸. 3)過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)面。(2)右手表示法: 令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向?yàn)閤軸正方向,食指指向?yàn)閥軸正向,中指指向則為z軸正向,這樣也可以
31、決定三軸間的相位置。(3)任意點(diǎn)坐標(biāo)表示:空間一點(diǎn)M的坐標(biāo)可以用有序?qū)崝?shù)組來(lái)表示,有序?qū)崝?shù)組 叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記作(x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo))(4)空間兩點(diǎn)距離坐標(biāo)公式:高中數(shù)學(xué)必修3知識(shí)點(diǎn)第一章 算法初步1.1.1 算法的概念算法的特點(diǎn):(1)有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無(wú)限的.(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.(3)順序性與正確性:算法從初始步驟開(kāi)始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前
32、一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無(wú)誤,才能完成問(wèn)題.(4)不唯一性:求解某一個(gè)問(wèn)題的解法不一定是唯一的,對(duì)于一個(gè)問(wèn)題可以有不同的算法.(5)普遍性:很多具體的問(wèn)題,都可以設(shè)計(jì)合理的算法去解決,如心算、計(jì)算器計(jì)算都要經(jīng)過(guò)有限、事先設(shè)計(jì)好的步驟加以解決.1.1.2 程序框圖1、程序框圖基本概念:(一)程序構(gòu)圖的概念:程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形。一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明。(二)構(gòu)成程序框的圖形符號(hào)及其作用程序框名稱(chēng)功能起止框表示一個(gè)算法的起始和結(jié)束,是任何流程圖不可少的。輸入、
33、輸出框表示一個(gè)算法輸入和輸出的信息,可用在算法中任何需要輸入、輸出的位置。處理框賦值、計(jì)算,算法中處理數(shù)據(jù)需要的算式、公式等分別寫(xiě)在不同的用以處理數(shù)據(jù)的處理框內(nèi)。判斷框判斷某一條件是否成立,成立時(shí)在出口處標(biāo)明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”。學(xué)習(xí)這部分知識(shí)的時(shí)候,要掌握各個(gè)圖形的形狀、作用及使用規(guī)則,畫(huà)程序框圖的規(guī)則如下:1、使用標(biāo)準(zhǔn)的圖形符號(hào)。2、框圖一般按從上到下、從左到右的方向畫(huà)。3、除判斷框外,大多數(shù)流程圖符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn)。判斷框具有超過(guò)一個(gè)退出點(diǎn)的唯一符號(hào)。4、判斷框分兩大類(lèi),一類(lèi)判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個(gè)結(jié)果;另一類(lèi)是多分支判斷,有幾
34、種不同的結(jié)果。5、在圖形符號(hào)內(nèi)描述的語(yǔ)言要非常簡(jiǎn)練清楚。(三)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡(jiǎn)單的算法結(jié)構(gòu),語(yǔ)句與語(yǔ)句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個(gè)依次執(zhí)行的處理步驟組成的,它是任何一個(gè)算法都離不開(kāi)的一種基本算法結(jié)構(gòu)。順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來(lái),按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)AB行B框所指定的操作。2、條件結(jié)構(gòu):條件結(jié)構(gòu)是指在算法中通過(guò)對(duì)條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。條件P是否成立而選擇執(zhí)行A
35、框或B框。無(wú)論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框。3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開(kāi)始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱(chēng)重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類(lèi):(1)、一類(lèi)是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時(shí),執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時(shí)不再執(zhí)行A框,離開(kāi)循環(huán)結(jié)構(gòu)。(2)、另一類(lèi)是直到型
36、循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時(shí)不再執(zhí)行A框,離開(kāi)循環(huán)結(jié)構(gòu)。A成立不成立P不成立P成立A 當(dāng)型循環(huán)結(jié)構(gòu) 直到型循環(huán)結(jié)構(gòu)注意:1循環(huán)結(jié)構(gòu)要在某個(gè)條件下終止循環(huán),這就需要條件結(jié)構(gòu)來(lái)判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個(gè)計(jì)數(shù)變量和累加變量。計(jì)數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計(jì)數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計(jì)數(shù)一次。1.2.1 輸入、輸出語(yǔ)句和賦值語(yǔ)句3、賦值語(yǔ)句變量表達(dá)式圖形計(jì)算器格式表達(dá)式變量(1)賦值語(yǔ)句的一般格式(
37、2)賦值語(yǔ)句的作用是將表達(dá)式所代表的值賦給變量;(3)賦值語(yǔ)句中的“”稱(chēng)作賦值號(hào),與數(shù)學(xué)中的等號(hào)的意義是不同的。賦值號(hào)的左右兩邊不能對(duì)換,它將賦值號(hào)右邊的表達(dá)式的值賦給賦值號(hào)左邊的變量;(4)賦值語(yǔ)句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個(gè)數(shù)據(jù)、常量或算式;(5)對(duì)于一個(gè)變量可以多次賦值。注意:賦值號(hào)左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯(cuò)誤的。賦值號(hào)左右不能對(duì)換。如“A=B”“B=A”的含義運(yùn)行結(jié)果是不同的。不能利用賦值語(yǔ)句進(jìn)行代數(shù)式的演算。(如化簡(jiǎn)、因式分解、解方程等)賦值號(hào)“=”與數(shù)學(xué)中的等號(hào)意義不同。分析:在IFTHENELSE語(yǔ)句中,“條件”表示判斷的條件,“
38、語(yǔ)句1”表示滿(mǎn)足條件時(shí)執(zhí)行的操作內(nèi)容;“語(yǔ)句2”表示不滿(mǎn)足條件時(shí)執(zhí)行的操作內(nèi)容;END IF表示條件語(yǔ)句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí),首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,則執(zhí)行THEN后面的語(yǔ)句1;若條件不符合,則執(zhí)行ELSE后面的語(yǔ)句21.3.1輾轉(zhuǎn)相除法與更相減損術(shù)1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:(1):用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商和一個(gè)余數(shù);(2):若0,則n為m,n的最大公約數(shù);若0,則用除數(shù)n除以余數(shù)得到一個(gè)商和一個(gè)余數(shù);(3):若0,則為m,n的最大公約數(shù);若0,則用除數(shù)除以余數(shù)得到一個(gè)商和一個(gè)余數(shù); 依次計(jì)算直至0,此時(shí)所得到的即為所
39、求的最大公約數(shù)。2、更相減損術(shù)我國(guó)早期也有求最大公約數(shù)問(wèn)題的算法,就是更相減損術(shù)。在九章算術(shù)中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。翻譯為:(1):任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡(jiǎn);若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。例2 用更相減損術(shù)求98與63的最大公約數(shù).分析:(略) 3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:(1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法以除法為主,
40、更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對(duì)較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。(2)從結(jié)果體現(xiàn)形式來(lái)看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到1.3.2秦九韶算法與排序1、秦九韶算法概念:f(x)=anxn+an-1xn-1+.+a1x+a0求值問(wèn)題f(x)=anxn+an-1xn-1+.+a1x+a0=( anxn-1+an-1xn-2+.+a1)x+a0 =( anxn-2+an-1xn-3+.+a2)x+a1)x+a0 =.=(.( anx+an-1)x+an-2)x+.+a1)x+a0求多項(xiàng)式的值時(shí),首先計(jì)算最內(nèi)層括
41、號(hào)內(nèi)依次多項(xiàng)式的值,即v1=anx+an-1然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,即v2=v1x+an-2 v3=v2x+an-3 . vn=vn-1x+a0這樣,把n次多項(xiàng)式的求值問(wèn)題轉(zhuǎn)化成求n個(gè)一次多項(xiàng)式的值的問(wèn)題。第二章 統(tǒng)計(jì)2.1.1簡(jiǎn)單隨機(jī)抽樣1總體和樣本 在統(tǒng)計(jì)學(xué)中 , 把研究對(duì)象的全體叫做總體把每個(gè)研究對(duì)象叫做個(gè)體把總體中個(gè)體的總數(shù)叫做總體容量為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:, , , 研究,我們稱(chēng)它為樣本其中個(gè)體的個(gè)數(shù)稱(chēng)為樣本容量2簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類(lèi)、排隊(duì)等,完全隨 機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性
42、相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。3簡(jiǎn)單隨機(jī)抽樣常用的方法: (1)抽簽法;隨機(jī)數(shù)表法;計(jì)算機(jī)模擬法;使用統(tǒng)計(jì)軟件直接抽取。在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:總體變異情況;允許誤差范圍;概率保證程度。4抽簽法: (1)給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào); (2)準(zhǔn)備抽簽的工具,實(shí)施抽簽 (3)對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查 例:請(qǐng)調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。5隨機(jī)數(shù)表法: 例:利用隨機(jī)數(shù)表在所在的班級(jí)中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。
43、2.1.2系統(tǒng)抽樣1系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡(jiǎn)單隨機(jī)抽樣的辦法抽取。K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)前提條件:總體中個(gè)體的排列對(duì)于研究的變量來(lái)說(shuō),應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開(kāi)始抽樣,對(duì)比幾次樣本的特點(diǎn)。如果有明顯差別,說(shuō)明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。2系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘?duì)抽樣框的要求較低,實(shí)施也比較簡(jiǎn)單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量
44、可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。2.1.3分層抽樣1分層抽樣(類(lèi)型抽樣):先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類(lèi)型或?qū)哟?,然后再在各個(gè)類(lèi)型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構(gòu)成總體的樣本。兩種方法:1先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。2先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。2分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,
45、所有的樣本進(jìn)而代表總體。分層標(biāo)準(zhǔn):(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。(3)以那些有明顯分層區(qū)分的變量作為分層變量。3分層的比例問(wèn)題: (1)按比例分層抽樣:根據(jù)各種類(lèi)型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來(lái)抽取子樣本的方法。 (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對(duì)不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對(duì)各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際
46、的比例結(jié)構(gòu)。2.2.2用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征1、本均值:2、樣本標(biāo)準(zhǔn)差:3用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。4(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變(2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉?lái)的k倍(3)一組數(shù)據(jù)中的最大值和最小值對(duì)標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;“去
47、掉一個(gè)最高分,去掉一個(gè)最低分”中的科學(xué)道理2.3.2兩個(gè)變量的線性相關(guān)1、概念: (1)回歸直線方程 (2)回歸系數(shù)2回歸直線方程的應(yīng)用 (1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個(gè)變量間依存的數(shù)量關(guān)系 (2)利用回歸方程進(jìn)行預(yù)測(cè);把預(yù)報(bào)因子(即自變量x)代入回歸方程對(duì)預(yù)報(bào)量(即因變量Y)進(jìn)行估計(jì),即可得到個(gè)體Y值的容許區(qū)間。 (3)利用回歸方程進(jìn)行統(tǒng)計(jì)控制規(guī)定Y值的變化,通過(guò)控制x的范圍來(lái)實(shí)現(xiàn)統(tǒng)計(jì)控制的目標(biāo)。如已經(jīng)得到了空氣中NO2的濃度和汽車(chē)流量間的回歸方程,即可通過(guò)控制汽車(chē)流量來(lái)控制空氣中NO2的濃度。4應(yīng)用直線回歸的注意事項(xiàng) (1)做回歸分析要有實(shí)際意義;(2)回歸
48、分析前,最好先作出散點(diǎn)圖; (3)回歸直線不要外延。第三章 概 率3.1.1 3.1.2隨機(jī)事件的概率及概率的意義1、基本概念:(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;(3)確定事件:必然事件和不可能事件統(tǒng)稱(chēng)為相對(duì)于條件S的確定事件;(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱(chēng)n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱(chēng)事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的概率:對(duì)
49、于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱(chēng)為事件A的概率。(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率、3.1.3 概率的基本性質(zhì)1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若AB為不可能事件,即AB=,那么稱(chēng)事件A與事件B互斥;(3)若A
50、B為不可能事件,AB為必然事件,那么稱(chēng)事件A與事件B互為對(duì)立事件;(4)當(dāng)事件A與B互斥時(shí),滿(mǎn)足加法公式:P(AB)= P(A)+ P(B);若事件A與B為對(duì)立事件,則AB為必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B)2、概率的基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0P(A)1;2)當(dāng)事件A與B互斥時(shí),滿(mǎn)足加法公式:P(AB)= P(A)+ P(B);3)若事件A與B為對(duì)立事件,則AB為必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B);4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中
51、不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。3.2.1 3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生1、(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;求出總的基本事件數(shù);求出事件A所包含的基本事件數(shù),然后利用公式P(A)=3.3.13.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生1、基本概念:(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)
52、成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:P(A)=;(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等高中數(shù)學(xué)必修4知識(shí)點(diǎn)2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合,終邊落在第幾象限,則稱(chēng)為第幾象限角第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標(biāo)軸上的角的集合為3、與角終邊相同的角的集合為4、已知是第幾象限角,確定所在象限的方法:先把各象限均分等份,再?gòu)妮S的正半軸的上方起,依次將各區(qū)域標(biāo)上一、
53、二、三、四,則原來(lái)是第幾象限對(duì)應(yīng)的標(biāo)號(hào)即為終邊所落在的區(qū)域5、長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做弧度6、半徑為的圓的圓心角所對(duì)弧的長(zhǎng)為,則角的弧度數(shù)的絕對(duì)值是7、弧度制與角度制的換算公式:,8、若扇形的圓心角為,半徑為,弧長(zhǎng)為,周長(zhǎng)為,面積為,則,9、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是,它與原點(diǎn)的距離是,則,10、三角函數(shù)在各象限的符號(hào):第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正11、三角函數(shù)線:,Pvx y A O M T 12、同角三角函數(shù)的基本關(guān)系:;13、三角函數(shù)的誘導(dǎo)公式:,口訣:函數(shù)名稱(chēng)不變,符號(hào)看象限,口訣:正弦與余弦互換,符號(hào)看象限14、函數(shù)的圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 行業(yè)規(guī)范與企業(yè)自律的最佳實(shí)踐
- 誠(chéng)信經(jīng)營(yíng)與企業(yè)的法治建設(shè)
- 2025年協(xié)作推進(jìn)協(xié)議樣本
- 二甲基亞砜項(xiàng)目的現(xiàn)狀及總體形勢(shì)
- 國(guó)內(nèi)外資金流動(dòng)對(duì)消費(fèi)信心的正向影響
- 綠色消費(fèi)與金融資源對(duì)接的機(jī)遇
- 籌資源支持提振消費(fèi)的面臨的問(wèn)題、機(jī)遇與挑戰(zhàn)
- 理賠業(yè)務(wù)合規(guī)審查風(fēng)險(xiǎn)基礎(chǔ)知識(shí)點(diǎn)歸納
- 2025年考研政治中國(guó)特色社會(huì)主義論述題卷:理論深度與熱點(diǎn)問(wèn)題探討
- 教聯(lián)體高質(zhì)量發(fā)展風(fēng)險(xiǎn)管理評(píng)估
- 智慧用電系統(tǒng)及智慧用電智能監(jiān)控技術(shù)的應(yīng)用及推廣實(shí)施方案
- 文物安全防護(hù)工程實(shí)施工作指南(試行)
- PVC膜生產(chǎn)中的關(guān)鍵技術(shù)
- 考點(diǎn)10 漢字書(shū)寫(xiě)與書(shū)法鑒賞小升初語(yǔ)文專(zhuān)題訓(xùn)練(統(tǒng)編版)
- 房屋征收服務(wù)投標(biāo)文件(技術(shù)方案)
- 《新聞采訪與寫(xiě)作》(第三版)目錄(丁柏銓高等教育出版社)
- 名著閱讀 第16周閱讀計(jì)劃《鋼鐵是怎樣煉成的》整本書(shū)閱讀與研討三(作業(yè)教學(xué)設(shè)計(jì))2023-2024學(xué)年八年級(jí)語(yǔ)文下冊(cè)同步備課
- 環(huán)保項(xiàng)目運(yùn)維服務(wù)合同
- 四川省成都市成華區(qū)2023-2024學(xué)年七年級(jí)下學(xué)期期末生物試題(解析版)
- 江西聯(lián)創(chuàng)光電超導(dǎo)應(yīng)用有限公司2023年度財(cái)務(wù)報(bào)表審計(jì)報(bào)告書(shū)
- 2024年全國(guó)統(tǒng)計(jì)師之初級(jí)統(tǒng)計(jì)基礎(chǔ)理論及相關(guān)知識(shí)考試重點(diǎn)試卷(附答案)
評(píng)論
0/150
提交評(píng)論