




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、第五節(jié)第五節(jié)復合函數(shù)的偏導數(shù)和全微分復合函數(shù)的偏導數(shù)和全微分證證),()(tttu 則則);()(tttv 一、鏈式法則一、鏈式法則定理如果函數(shù)定理如果函數(shù))(tu 及及)(tv 都在點都在點t可可導,函數(shù)導,函數(shù)),(vufz 在對應點在對應點),(vu具有連續(xù)偏具有連續(xù)偏導數(shù),則復合函數(shù)導數(shù),則復合函數(shù))(),(ttfz 在對應點在對應點t可可導,且其導數(shù)可用下列公式計算:導,且其導數(shù)可用下列公式計算: dtdvvzdtduuzdtdz ,獲得增量獲得增量設設tt 由由于于函函數(shù)數(shù)),(vufz 在在點點),(vu有有連連續(xù)續(xù)偏偏導導數(shù)數(shù),21vuvvzuuzz 當當0 u,0 v時,時,
2、01 ,02 tvtutvvztuuztz 21 當當0 t時,時, 0 u,0 v,dtdutu ,dtdvtv .lim0dtdvvzdtduuztzdtdzt 上定理的結(jié)論可推廣到中間變量多于兩個的情況上定理的結(jié)論可推廣到中間變量多于兩個的情況.如如dtdwwzdtdvvzdtduuzdtdz uvwtz以上公式中的導數(shù)以上公式中的導數(shù) 稱為稱為dtdz 上定理還可推廣到中間變量不是一元函數(shù)上定理還可推廣到中間變量不是一元函數(shù)而是多元函數(shù)的情況:而是多元函數(shù)的情況:).,(),(yxyxfz 如果如果),(yxu 及及),(yxv 都在點都在點),(yx具有對具有對x和和y的偏導數(shù),且函
3、數(shù)的偏導數(shù),且函數(shù)),(vufz 在對應在對應點點),(vu具有連續(xù)偏導數(shù),則復合函數(shù)具有連續(xù)偏導數(shù),則復合函數(shù)),(),(yxyxfz 在對應點在對應點),(yx的兩個偏的兩個偏導數(shù)存在,且可用下列公式計算導數(shù)存在,且可用下列公式計算 xvvzxuuzxz , yvvzyuuzyz .uvxzy鏈式法則如圖示鏈式法則如圖示 xz uzxu vz,xv yz uzyu vz.yv 類似地再推廣,設類似地再推廣,設),(yxu 、),(yxv 、),(yxww 都在點都在點),(yx具有對具有對x和和y的偏導數(shù),復合的偏導數(shù),復合函數(shù)函數(shù)),(),(),(yxwyxyxfz 在對應點在對應點),
4、(yx兩個偏導數(shù)存在,且可用下列公式計算兩個偏導數(shù)存在,且可用下列公式計算 xwwzxvvzxuuzxz , ywwzyvvzyuuzyz .zwvuyx特殊地特殊地),(yxufz ),(yxu 即即,),(yxyxfz ,xfxuufxz .yfyuufyz 令令,xv , yw 其中其中, 1 xv, 0 xw, 0 yv. 1 yw把把復復合合函函數(shù)數(shù),),(yxyxfz 中中的的y看看作作不不變變而而對對x的的偏偏導導數(shù)數(shù)把把),(yxufz 中中的的u及及y看看作作不不變變而而對對x的的偏偏導導數(shù)數(shù)兩者的區(qū)別兩者的區(qū)別區(qū)別類似區(qū)別類似,),(wvyxfz例例 1 1 設設vezus
5、in ,而,而xyu ,yxv , 求求 xz 和和yz .解解 xz uzxu vzxv 1cossin veyveuu),cossin(vvyeu yz uzyu vzyv 1cossin vexveuu).cossin(vvxeu 例例 2 2 設設tuvzsin ,而而teu ,tvcos , 求求全全導導數(shù)數(shù)dtdz.解解tzdtdvvzdtduuzdtdz ttuvetcossin ttetettcossincos .cos)sin(costttet 例例 3 3 設設),(xyzzyxfw ,f具有二階具有二階 連續(xù)偏導數(shù),求連續(xù)偏導數(shù),求xw 和和zxw 2. .解解令令, z
6、yxu ;xyzv 記記,),(1uvuff ,),(212vuvuff 同理有同理有,2f ,11f .22f xwxvvfxuuf ;21fyzf zxw2)(21fyzfz ;221zfyzf yzf zf1zvvfzuuf 11;1211fxyf zf2zvvfzuuf 22;2221fxyf 于是于是 zxw21211fxyf 2f y )(2221fxyfyz .)(22221211f yf zxyfzxyf 設函數(shù)設函數(shù)),(vufz 具有連續(xù)偏導數(shù),則有全微分具有連續(xù)偏導數(shù),則有全微分dvvzduuzdz ;當當),(yxu 、),(yxv 時,有時,有dyyzdxxzdz .
7、全微分形式不變形的實質(zhì)全微分形式不變形的實質(zhì): 無論無論 是自變量是自變量 的函數(shù)或中間變量的函數(shù)或中間變量 的函數(shù),它的全微分形式是一樣的的函數(shù),它的全微分形式是一樣的.zvu、vu、二、全微分形式不變性二、全微分形式不變性dxxvvzxuuz dyyzdxxzdz dyyvvzyuuz dyyudxxuuz dyyvdxxvvzduuz .dvvz 例例 4 4 已知已知02 zxyeze,求,求xz 和和yz .解解, 0)2( zxyezed, 02)( dzedzxydezxy)()2(ydxxdyedzexyz dyexedxeyedzzxyzxy)2()2( xz ,2 zxye
8、yeyz .2 zxyexe1、鏈式法則、鏈式法則(分三種情況)(分三種情況)2、全微分形式不變性、全微分形式不變性(特別要注意課中所講的特殊情況)(特別要注意課中所講的特殊情況)(理解其實質(zhì))(理解其實質(zhì))三、小結(jié)三、小結(jié)設設),(xvufz ,而而)(xu ,)(xv ,則則xfdxdvvfdxduufdxdz ,試試問問dxdz與與xf 是是否否相相同同?為為什什么么?思考題思考題思考題解答思考題解答不相同不相同.等式左端的等式左端的z是作為一個自變量是作為一個自變量x的函數(shù),的函數(shù),而而等等式式右右端端最最后后一一項項f是是作作為為xvu,的的三三元元函函數(shù)數(shù), 寫出來為寫出來為 xx
9、vuxdxduufdxdz),(.),(),(xvuxxvuxfdxdvvf 一、填空題一、填空題: : 1 1、設、設xyyxzcoscos , ,則則 xz_; yz_. .2 2、 設設22)23ln(yyxxz , ,則則 xz_; yz_._. 3 3、設、設32sinttez , ,則則 dtdz_._.二二、設設uvuez , ,而而xyvyxu ,22,求求yzxz , . .練練 習習 題題三、設三、設)arctan(xyz , ,而而xey , ,求求dxdz. .四、設四、設),(22xyeyxfz ( (其其具具中中f有一階連續(xù)偏導有一階連續(xù)偏導 數(shù)數(shù)) ), ,求求y
10、zxz ,. .五、設五、設)(xyzxyxfu ,(,(其其具具中中f有一階連續(xù)偏導有一階連續(xù)偏導 數(shù)數(shù)),),求求.,zuyuxu 六、設六、設),(yxxfz ,(,(其其具具中中f有二階連續(xù)偏導數(shù)有二階連續(xù)偏導數(shù)),),求求 22222,yzyxzxz . .七、設七、設,)(22yxfyz 其中為可導函數(shù)其中為可導函數(shù), , 驗證驗證: :211yzyzyxzx . .八、設八、設 ,),(其中其中yyxxz 具有二階導數(shù)具有二階導數(shù), ,求求 .,2222yzxz 一、一、1 1、xyyyyxxxyxxxy222cos)cossin(cos,cos)sin(coscos ; 2 2、,)23(3)23ln(2222yyxxyxyx 2232)23(2)23ln(2yyxxyxyx ; 3 3、.)43(1)41(3232ttt 二、二、,)(22222222yxxyeyyxyxyxxz )(22222)(22yxxyeyxxyxyyz . .練習題答案練習題答案三、三、xxexxedxdz221)1( . .
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆上海市文綺中學物理高一第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析
- 2025屆山西大學附屬中學物理高一第二學期期末檢測模擬試題含解析
- 量子糾纏與量子錯誤糾正-洞察闡釋
- 用戶反饋在交互設計中的應用-洞察闡釋
- 2025屆安徽省阜陽三中物理高二第二學期期末統(tǒng)考試題含解析
- 北京海淀2025年物理高二下期末達標測試試題含解析
- 2025年商業(yè)街區(qū)改造項目社會穩(wěn)定風險評估與風險評估標準制定報告
- 福建省福清市華僑中學2025屆物理高二下期末綜合測試試題含解析
- 2025屆河北省保定市淶水縣波峰中學高二物理第二學期期末質(zhì)量檢測試題含解析
- 2025年山東省濟南市平陰縣第一中學物理高一下期末教學質(zhì)量檢測試題含解析
- 學霸提優(yōu)第四單元《我們講文明》重難點梳理 課件
- 安徽青碩建設有限公司招聘筆試真題2024
- 第五版-FMEA-新版FMEA【第五版】
- 火龍罐綜合灸技術(shù)課件
- 退役軍人事務系統(tǒng)公考綜合基礎知識考試能力測試(含答案)
- LS/T 3244-2015全麥粉
- GB/T 6414-2017鑄件尺寸公差、幾何公差與機械加工余量
- GB/T 20957.4-2007精密加工中心檢驗條件第4部分:線性和回轉(zhuǎn)軸線的定位精度和重復定位精度檢驗
- 電纜橋架施工圖集
- 信念的力量課件
- 接力初三贏在暑假-八年級下學期期末家長會課件
評論
0/150
提交評論