非線性分析——第二次作業(yè)_第1頁(yè)
非線性分析——第二次作業(yè)_第2頁(yè)
非線性分析——第二次作業(yè)_第3頁(yè)
非線性分析——第二次作業(yè)_第4頁(yè)
非線性分析——第二次作業(yè)_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、The Second HomeworkQuestion 1For the following dynamical systems1) 2) a) Find all fixed points and classify them.b) Sketch the phase space portrait.Solution:(1) Letting, the corresponding state-space equations is The method of Poincare sections is used in the question.Letting , and C is constant, th

2、en we can obtain thatTherefore, the fixed points are given as (0,0). Jacobian matrix is The eigenvalues calculated asTherefore, there is an unstable fixed point, the saddle point.The phase space portrait is present in Fig. 1.Fig. 1(2) Equations LettingThen, the fixed points are obtained as (0,0).Jac

3、obian matrix Eigenvalues are Therefore, the stability cant be determined by the eigenvalues directly.A Lyapunov function is constructed asThe derivative of isLetting , then , so examined fixed point (0,0) is stable.The phase space portrait is present in Fig. 2.Fig. 2Question 2Given the system determ

4、ine the stability at (0,0,0).Solution:To find the fixed points, we have to solve equationsOne fixed point is obtained as (0,0,0).Jacobian matrixEigenvalues are Therefore, the stability cant be determined by the eigenvalues directly.A Lyapunov function is constructed asThe derivative of isLetting , t

5、hen , so examined fixed point (0,0,0) is stable.Question 3For the system a) Find all fixed points and discuss the stability.b) Analyze the bifurcation and sketch the bifurcation diagram.Solution:Letting , the corresponding state-space equations is Solve the equationsWe find two fixed points:(0, 0) a

6、nd ( , 0) Jacobian matrix the system is a) At the fixed point (0,0), the Jacobian matrix isWhen , the eigenvalues are and , there is an unstable fixed point, the saddle point. The phase space portrait is shown in Fig. 3.When , the eigenvalues are i and i, there is neutral fixed point, the node point

7、. The phase space portrait is shown in Fig. 4. Fig. 3 Fig. 4 b) At the fixed point ( ,0), the Jacobian matrix is the eigenvalues are and , there is neutral fixed point, the node point. The phase space portrait is shown in Fig. 5.Fig. 5The bifurcation diagram is shown in Fig. 6.Fig. 6Question 4Show t

8、hat the one parameter system undergoes a Hopf bifurcation at = 0. Plot phase portraits and sketch the bifurcation diagram.Solution:Letting , the corresponding state-space equations is Solve the equationsThen, the fixed points are obtained as (0,0).Jacobian matrix the system is Eigenvalues are When ,

9、 there is an stable fixed node. The phase space portrait is shown in Fig. 7.Fig. 7When , there is an stable star. The phase space portrait is shown in Fig. 8. Fig. 8When , there is an stable spiral. The phase space portrait is shown in Fig. 9. Fig. 9When , there is an node center. The phase space po

10、rtrait is shown in Fig. 10. Fig. 10When , there is an unstable spiral. The phase space portrait is shown in Fig. 11. Fig. 11When , there is an unstable star. The phase space portrait is shown in Fig. 12. Fig. 12When , there is an unstable fixed node. The phase space portrait is shown in Fig. 13. Fig

11、. 13The bifurcation diagram is pictured in Fig. 14.Fig. 14Question 5For Hénon map 1) Find the points of period-1 and period-2 for the Hénon map.2) Investigate the bifurcation diagrams for the Hénon map by plotting the values as a function of when = 0.38.Solution:For period-1,Letting , and then So

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論