




已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
附錄A:英文原文LeastsquaresphaseunwrappinginwaveletdomainAbstract:Leastsquaresphaseunwrappingisoneoftherobusttechniquesusedtosolvetwo-dimensionalphaseunwrappingproblems.However,owingtoitssparsestructure,theconvergencerateisveryslow,andsomepracticalmethodshavebeenappliedtoimprovethiscondition.Inthispaper,anewmethodforsolvingtheleastsquarestwo-dimensionalphaseunwrappingproblemispresented.Thistechniqueisbasedonthemultiresolutionrepresentationofalinearsystemusingthediscretewavelettransform.Byapplyingthewavelettransform,theoriginalsystemisdecomposedintoitscoarseandfineresolutionlevels.Fastconvergenceinseparatecoarseresolutionlevelsmakestheoverallsystemconvergenceveryfast.1introductionTwo-dimensionalphaseunwrappingisanimportantprocessingstepinsomecoherentimagingapplications,suchassyntheticapertureradarinterferometry(InSAR)andmagneticresonanceimaging(MRI).Intheseprocesses,three-dimensionalinformationofthemeasuredobjectscanbeextractedfromthephaseofthesensedsignals,However,theobseryedphasedataarewrappedprincipalvalues,whicharerestrictedina2modulus,andtheymustbeunwrappedtotheirtrueabsolutephasevalues.Thisisthetaskofthephaseunwrapping,especiallyfortwo-dimensionalproblems.Thebasicassumptionofthegeneralphaseunwrappingmethodsisthatthediscretederivativesoftheunwrappedphaseatallgridpointsarelessthaninabsolutevalue.Withthisassumptionsatisfied,theabsolutephasecanbereconstructedperfectlybyintegratingthepartialderivativesofthewrappedphasedata.Inthegeneralcase,however,itisnotpossibletorecoverunambiguouslytheabsolutephasefromthemeasuredwrappedphasewhichisusuallycorruptedbynoiseoraliasingeffectssuchasshadow,layover,etc.Insuchcases,thebasicassumptionisviolatedandthesimpleintegrationprocedurecannotbeappliedowingtothephaseinconsistenciescausedbythecontaminations.AfterGoldstein-etalintroducedtheconceptofresiduesinthetwo-dimensionalphaseunwrappingproblemofInSAR,manyphaseunwrappingapproachestocopewiththisproblemhavebeeninvestigated.Path-following(orintegration-based)methodsandleastsquaresmethodsarethemostrepresentativetwobasicclassesinthisfield.TherehavealsobeensomeotherapproachessuchasGreenmethods,Bayesianregularizationmethods,imageprocessing-basedmethods,andmodel-basedmethods.Leastsquaresphaseunwrapping,establishedbyGhigliaandRomero,isoneofthemostrobusttechniquestosolvethetwo-dimensionalphaseunwrappingproblem.Thismethodobtainsanunwrappedsolutionbyminimizingthedifferencesbetweenthepartialderivativesofthewrappedphasedataandtheunwrappedsolution.Leastsquaresmethodisdividedintounweightedandweightedleastsquaresphaseunwrapping.Toisolatethephaseinconsistencies,aweightedleastsquaresmethodshouldbeused,whichdepressesthecontaminationeffectsbyusingtheweightingarrays.GreenmethodsandBayesianmethodsarealsobasedontheleastsquaresscheme.Butthesemethodsaredifferentfromthoseof,intheconceptofphaseinconsistencytreatment.Thus,thispaperconcernsonlytheleastsquaresphaseunwrappingproblemofGhigliascategory.Theleastsquaresmethodiswell-definedmathematicallyandequivalenttothesolutionofPoissonspartialdifferentialequation,whichcanbeexpressedasasparselinearequation.anteriormethodisusuallyusedtosolvethislargelinearequation.However,alargecomputationtimeisrequiredandthereforeimprovingtheconvergencerateisaveryimportanttaskwhenusingthismethod.Somenumericalalgorithmshavebeenappliedtothisproblemtoimproveconvergenceconditions.Anapproachforfastconvergenceofasparselinearequationistotransfertheoriginalequationsystemintoanewsystemwithlargersupports.Multiresolutionorhierarchicalrepresentationconceptshaveoftenbeenusedforthispurpose.Recently,wavelettransformhasbeeninvestigateddeeplyinscienceandengineeringfieldsasasophisticatedtoolforthemultiresolutionanalysisofsignalsandsystems.Itdecomposesasignalspaceintoitslow-resolutionsubspaceandthecomplementarydetailsubspaces.Inourmethod,thediscretewavelettransformisappliedtothelinearsystemofleastsquaresphaseunwrappingproblemtorepresenttheoriginalsysteminseparatemultiresolutionspaces.Inthisnewtransferredsystem,abetterconvergenceconditioncanbeachieved.Thismethodwasbrieflyintroducedinoutpreviouswork,wheretheproposedmethodwasappliedonlytotheunweightedproblem,Inthispaper,thisnewmethodisextendedtotheweightedleastsquaresproblem.Also,afulldescriptionoftheproposedmethodisgivenhere.2Weightedleastsquaresphaseunwrapping:areviewLeastsquaresphaseobtainsanunwrappedsolutionbyminimizingthe2L-normbetweenthediscretepartialderivativesofthewrappedphasedataandthoseoftheunwrappedsolutionfunction.Giventhewrappedphase,ijonanMNrectangulargrid(01iM,01jN),thepartialderivativesofthewrappedphasearedefinedas,1,xijijijW,1,yijijijW(1)WhereWisthewrappingoperatorthatwrapsthephaseintotheinterval,.Thedifferencesbetweenthepartialderivativesofthesolution,ijandthosein(1)canbeminimizedintheweightedleastsquaressense,bydifferentiatingthesum22,1,1,xxyyijijijijijijijijijijww(2)Withrespectto,ijandsettingtheresulttozero.In(2),thegradientweights,xijwand,yijw,areusedtopreventsomephasevaluescorruptedbynoiseoraliasingfromdegradingtheunwrapping,andaredefinedby22,1,min,xijijijwww,22,1,min,yijijijwww,01ijw(3)Theweightedleastsquaresphaseunwrappingproblemistofindthesolution,ijthatminimizesthesumof(2).Theinitialweightarray,ijwisuser-definedandsomemethodsfordefiningtheseweightsarepresentedin1,11.Whenalltheweights,1ijw,theaboveequationistheunweightedphaseunwrappingproblem.Sinceweightarrayisrelatedtotheexactitudeoftheresultantunwrappedsolution,itmustbedefinedproperly.Inthispaper,however,itisassumedthattheweightarrayisdefinedalreadyforthegivenphasedataandhowtodefineitisnotcoveredhere.Onlytheconvergenceratesissueoftheweightedleastsquaresphaseunwrappingproblemisconsideredhere.Theleastsquaressolutiontothisproblemyieldsthefollowingequation:,1,1,1,1,1,1,xxyyijijijijijijijijijijijijijwwww(4)Where,ijistheweightedphaseLaplaciandefinedby,1,1,1,1xxxxxxxxijijijijijijijijijwwww(5)Theunwrappedsolution,ijisobtainedbyiterativelysolvingthefollowingequation,1,1,1,1,1,1,1,1/xxyyxxyyijijijijijijijijijijijijijijwwwwwwww(6)Equation(4)istheweightedanddiscreteversionofthePoissonspartialdifferentialequation(PDE),2.Byconcatenatingallthenodalvariables,ijintoMN1onecolumnvector,theaboveequationisexpressedasalinearsystemA(7)WherethesystemmatrixAisofsizeKK(K=MN)andisacolumnvectorof,ij,Thatis,thesolutionoftheleastsquaresphaseunwrappingproblemcanbeobtainedbysolvingthislinearsystem,andforgivenAand,whicharedefinedfromtheweightarray,xijwandthemeasuredwrappedphase,ijtheunwrappedphasehastheuniquesolution1A,ButsinceAisaverylargematrix,thedirectinverseoperationispracticallyimpossible.ThestructureofthesystemmatrixAisverysparseandmostoftheoff-diagonalelementsarezero,whichisevidentfrom(4).DirectmethodsbasedonthefastFouriertransform(FFT)orthediscretecosinetransform(DCT)canbeappliedtosolvetheunweightedphaseunwrappingproblem.However,intheweightedcase,iterativemethodsshouldbeadopted.TheclassicaliterativemethodforsolvingthelinearsystemistheGauss-Seidelrelaxation,whichsolves(6)bysimpleiterationuntilitconverges.However,thismethodisnotpracticalowingtoitsextremelyslowconvergence,whichiscausedbythesparsecharacteristicsofthesystemmatrixA.Somenumericalalgorithmssuchaspreconditionedconjugategradient(PCG),ormultigridmethodwereappliedtoimplementtheweightedleastsquaresphaseunwrapping.ThePCGmethodconvergesrapidlyonunweightedphaseunwrappingproblemsorweightedproblemsthatdonothavelargephasediscontinuities.However,ondatawithlargediscontinuities,itrequiresmanyiterationstoconverge.ThemultigridmethodisanefficientalgorithmtosolvealinearsystemandperformsmuchbetterthantheGauss-SeidelmethodandthePCGmethodinsolvingtheleastsquaresphaseunwrappingproblem.However,inthewe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建莆田三模數(shù)學(xué)試卷
- 二四年高職高考數(shù)學(xué)試卷
- 大學(xué)新聞寫作培訓(xùn)課件
- 肌肉牽伸技術(shù)課件雙語
- 阜城中考數(shù)學(xué)試卷
- 2025年04月廣西南寧市第五人民醫(yī)院人才招聘14人筆試歷年專業(yè)考點(diǎn)(難、易錯(cuò)點(diǎn))附帶答案詳解
- 2025年浙江醫(yī)療衛(wèi)生招聘寧波大學(xué)附屬人民醫(yī)院招聘編外人員2人筆試歷年專業(yè)考點(diǎn)(難、易錯(cuò)點(diǎn))附帶答案詳解
- 2025至2030代理記賬產(chǎn)業(yè)市場深度分析及前景趨勢與投資報(bào)告
- 2025至2030畜牧行業(yè)市場占有率及投資前景評估規(guī)劃報(bào)告
- 2025至2030寵物保健品行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資管理報(bào)告
- (2025)《公共基礎(chǔ)知識》試真題庫與答案
- 2025盤錦市雙臺子區(qū)輔警考試試卷真題
- DB13T 2770-2018 焊接熔深檢測方法
- 關(guān)于衛(wèi)生院“十五五”發(fā)展規(guī)劃(完整本)
- 夫妻存款贈與協(xié)議書
- 2025海南中考:歷史必考知識點(diǎn)
- 2024年常州工學(xué)院輔導(dǎo)員考試真題
- 公司財(cái)務(wù)內(nèi)控培訓(xùn)
- 付款合同協(xié)議書范本
- 倉儲管理剖析
- 陪玩團(tuán)轉(zhuǎn)讓合同協(xié)議
評論
0/150
提交評論