




已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
IEEETRANSACTIONSONROBOTICS,VOL.25,NO.4,AUGUST2009851Vision-Based,DistributedControlLawsforMotionCoordinationofNonholonomicRobotsNimaMoshtagh,Member,IEEE,NathanMichael,Member,IEEE,AliJadbabaie,SeniorMember,IEEE,andKostasDaniilidis,SeniorMember,IEEEAbstractInthispaper,westudytheproblemofdistributedmo-tioncoordinationamongagroupofnonholonomicgroundrobots.Wedevelopvision-basedcontrollawsforparallelandbalancedcir-cularformationsusingaconsensusapproach.Theproposedcon-trollawsaredistributedinthesensethattheyrequireinformationonlyfromneighboringrobots.Furthermore,thecontrollawsarecoordinate-freeanddonotrelyonmeasurementorcommunica-tionofheadinginformationamongneighborsbutinsteadrequiremeasurementsofbearing,opticalflow,andtimetocollision,allofwhichcanbemeasuredusingvisualsensors.Collision-avoidancecapabilitiesareaddedtotheteammembers,andtheeffectivenessofthecontrollawsaredemonstratedonagroupofmobilerobots.IndexTermsCooperativecontrol,distributedcoordination,vision-basedcontrol.I.INTRODUCTIONCOOPERATIVEcontrolofmultipleautonomousagentshasbecomeavibrantpartofroboticsandcontroltheoryresearch.Themainunderlyingthemeofthislineofresearchistoanalyzeand/orsynthesizespatiallydistributedcontrolar-chitecturesthatcanbeusedformotioncoordinationoflargegroupsofautonomousvehicles.Someofthisresearchfocussesonflockingandformationcontrol9,14,16,22,31,andsynchronization2,39,whileothersfocusonrendezvous,distributedcoverage,anddeployment1,5.Akeyassump-tionimpliedinallofthepreviousreferencesisthateachvehicleorrobot(hereaftercalledanagent)communicatesitspositionand/orvelocityinformationtoitsneighbors.Inspiredbythesocialaggregationphenomenainbirdsandfish6,30,researchersinroboticsandcontroltheoryhaveManuscriptreceivedFebruary23,2008;revisedJanuary31,2009.Firstpub-lishedJune10,2009;currentversionpublishedJuly31,2009.ThispaperwasrecommendedforpublicationbyAssociateEditorZ.-W.LuoandEdi-torJ.-P.Laumonduponevaluationofthereviewerscomments.TheworkofA.JadbabaiewassupportedinpartbytheArmyResearchOfficeMultidisciplinaryUniversityResearchInitiative(ARO/MURI)underGrantW911NF-05-1-0381,inpartbytheOfficeofNavalResearch(ONR)/YoungIn-vestigatorProgram542371,inpartbyONRN000140610436,andinpartunderContractNSF-ECS-0347285.TheworkofK.DaniilidiswassupportedinpartunderContractNSF-IIS-0083209,inpartunderContractNSF-IIS-0121293,inpartunderContractNSF-EIA-0324977,andinpartunderContractARO/MURIDAAD19-02-1-0383.N.MoshtaghwaswiththeGeneralRobotics,Automation,Sensing,andPer-ceptionLaboratory,UniversityofPennsylvania,Philadelphia,PA19104USA.HeisnowwithScientificSystemsCompany,Inc.,Woburn,MA01801USA(e-mail:).N.Michael,A.Jadbabaie,andK.DaniilidisarewiththeGeneralRobotics,Automation,Sensing,andPerceptionLaboratory,UniversityofPennsylva-nia,Philadelphia,PA19104USA(e-mail:;;).Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineat.DigitalObjectIdentifier10.1109/TRO.2009.2022439developedtools,methods,andalgorithmsfordistributedmo-tioncoordinationofmultivehiclesystems.Twomaincollectivemotionsthatareobservedinnatureareparallelmotionandcircularmotion21.Onecaninterpretstabilizingthecircularformationasanexampleofactivityconsensus,i.e.,individualsare“movingaround”together.Stabilizingtheparallelforma-tionisanotherformofactivityconsensusinwhichindividuals“moveoff”together33.Circularformationsareobservedinfishschooling,whichisawell-studiedtopicinecologyandevolutionarybiology6.Inthispaper,wepresentasetofcontrollawsforcoordinatedmotions,suchasparallelandcircularformations,foragroupofplanaragentsusingpurelylocalinteractions.Thecontrollawsareintermsofshapevariables,suchastherelativedistancesandrelativeheadingsamongtheagents.However,theseparam-etersarenotreadilymeasurableusingsimpleandbasicsensingcapabilities.Thismotivatestherewritingofthederivedcontrollawsintermsofbiologicallymeasurableparameters.Eachagentisassumedtohaveonlymonocularvisionandisalsocapableofmeasuringbasicvisualquantities,suchasbearingangle,opti-calflow(bearingderivative),andtimetocollision.Rewritingthecontrolinputsintermsofquantitiesthatarelocallymeasurableisequivalenttoexpressingtheinputsinthelocalbodyframe.Suchachangeofcoordinatesystemfromaglobalframetoalocalframeprovidesuswithabetterintuitiononhowsimilarbehaviorsarecarriedoutinnature.Verificationofthetheorythroughmultirobotexperimentsdemonstratedtheeffectivenessofthevision-basedcontrollawstoachievethedesiredformations.Ofcourse,inreality,anyformationcontrolrequirescollisionavoidance,andindeed,collisionavoidancecannotbedonewithoutrange.Inordertoimprovetheexperimentalresults,weprovidedinteragent-collision-avoidancepropertiestotheteammembers.Inthispaper,weshowthatthetwotasksofformationkeepingandcollisionavoidancecanbedonewithdecoupledadditivetermsinthecontrollaw,wherethetermsforkeepingparallelandcircularformationsdependonlyonvisualparameters.Thispaperisorganizedasfollows.InSectionII,wereviewanumberofimportantrelatedworks.Somebackgroundinfor-mationongraphtheoryandothermathematicaltoolsusedinthispaperareprovidedinSectionIII.TheproblemstatementisgiveninSectionIV.InSectionsVandVI,wepresentthecontrollersthatstabilizeagroupofmobileagentsintoparallelandbalancedcircularformations,respectively.InSectionVII,wederivethevision-basedcontrollersthatareintermsofthevisualmeasurementsoftheneighboringagents.InSectionVIII,collision-avoidancecapabilitiesareaddedtothecontrollaws,andtheireffectivenessistestedonrealrobots.1552-3098/$26.002009IEEEAuthorizedlicenseduselimitedto:NanchangUniversity.DownloadedonJanuary12,2010at20:02fromIEEEXplore.Restrictionsapply.852IEEETRANSACTIONSONROBOTICS,VOL.25,NO.4,AUGUST2009II.RELATEDWORKANDCONTRIBUTIONSTheprimarycontributionofthispaperisthepresentationofsimplecontrollawstoachieveparallelandcircularformationsthatrequireonlyvisualsensing,i.e.,theinputsareintermsofquantitiesthatdonotrequirecommunicationamongnearestneighbors.IncontrastwiththeworkofJusthandKrishnaprasad17,MoshtaghandJadbabaie27,Paleyetal.32,33,andSepulchreetal.35,whereitisassumedthateachagenthasaccesstothevaluesofitsneighborspositionsandvelocities,wedesigndistributedcontrollawsthatuseonlyvisualcluesfromnearestneighborstoachievemotioncoordination.Ourapproachonderivingthevision-basedcontrollawscanbeclassifiedasanimage-basedvisualseroving41.Inimage-basedvisualservoing,featuresareextractedfromimages,andthenthecontrolinputiscomputedasafunctionoftheimagefeatures.In8,12,and38,authorsuseomnidirectionalcam-erasastheonlysensorforrobots.In8and38,inputoutputfeedbacklinearizationisusedtodesigncontrollawsforleader-followingandobstacleavoidance.However,theyassumethataspecificverticalposeofanomnidirectionalcameraallowsthecomputationofbothbearinganddistance.IntheworkofPrattichizzoetal.12,thedistancemeasurementisnotused;however,theleaderusesextendedKalmanfilteringtolocalizeitsfollowers,andcomputesthecontrolinputsandguidestheformationinacentralizedfashion.Inourpaper,thecontrolar-chitectureisdistributed,andwedesigntheformationcontrollersbasedonthelocalinteractionamongtheagentssimilartothatof14and22.Furthermore,forourvision-basedcontrollers,nodistancemeasurementisrequired.In25and34,circularformationsofamultivehiclesys-temundercyclicpursuitisstudied.Theirproposedstrategyisdistributedandsimplebecauseeachagentneedstomeasuretherelativeinformationfromonlyoneotheragent.Itisalsoshownthattheformationequilibriaofthemultiagentsystemaregeneralizedpolygons.Incontrastto25,ourcontrollawisanonlinearfunctionofthebearingangles,andasaresult,oursystemconvergestoadifferentsetofstableequilibria.III.BACKGROUNDInthissection,webrieflyreviewanumberofimportantcon-ceptsregardinggraphtheoryandregularpolygonsthatweusethroughoutthispaper.A.GraphTheoryAn(undirected)graphGconsistsofavertexsetVandanedgesetE,whereanedgeisanunorderedpairofdistinctverticesinG.Ifx,yVand(x,y)E,thenxandyaresaidtobeadjacent,orneighbors,andwedenotethisbywritingxy.Thenumberofneighborsofeachvertexisitsdegree.Apathoflengthrfromvertexxtovertexyisasequenceofr+1distinctverticesthatstartwithxandendwithysuchthatconsecutiveverticesareadjacent.IfthereisapathbetweenanytwoverticesofagraphG,thenGissaidtobeconnected.TheadjacencymatrixA(G)=aijofan(undirected)graphGisasymmetricmatrixwithrowsandcolumnsindexedbytheverticesofG,suchthataij=1ifvertexiandvertexjareneighbors,andaij=0otherwise.Wealsoassumethataii=0foralli.ThedegreematrixD(G)ofagraphGisadiagonalmatrixwithrowsandcolumnsindexedbyV,inwhichthe(i,i)-entryisthedegreeofvertexi.ThesymmetricsingularmatrixdefinedasL(G)=D(G)A(G)iscalledtheLaplacianofG.TheLaplacianmatrixcapturesmanytopologicalpropertiesofthegraph.TheLaplacianLisapositive-semidefinitematrix,andthealgebraicmultiplicityofitszeroeigenvalue(i.e.,thedimensionofitskernel)isequaltothenumberofconnectedcomponentsinthegraph.Then-dimensionaleigenvectorassociatedwiththezeroeigenvalueisthevectorofones,1n=1,.,1T.Formoreinformationongraphtheory,see13.B.RegularPolygonsLetd1andnanddarecoprime,thentheedgesintersect,andthepolygonisastar.Ifnanddhaveacommonfactorl1,thenthepolygonconsistsofltraversalsofthesamepolygonwithn/lverticesandedges.Ifd=n,thepolygonn/ncorrespondstoallpointsatthesamelocation.Ifd=n/2(withneven),thenthepolygonconsistsoftwoendpointsandalinebetweenthem,withpointshavinganevenindexononeendandpointshavinganoddindexontheother.Formoreinformationonregulargraphs,see7.IV.PROBLEMSTATEMENTConsideragroupofnunit-speedplanaragents.Eachagentiscapableofsensinginformationfromitsneighbors.Theneigh-borhoodsetofagenti,thatis,Ni,isthesetofagentsthatcanbe“seen”byagenti.Theprecisemeaningof“seeing”willbeclarifiedlater.Thesizeoftheneighborhooddependsonthechar-acteristicsofthesensors.TheneighboringrelationshipbetweenagentscanbeconvenientlydescribedbyaconnectivitygraphG=(V,E,W).Definition1(Connectivitygraph):TheconnectivitygraphG=(V,E,W)isagraphconsistingof1)asetofverticesVindexedbythesetofmobileagents;2)asetofedgesE=(i,j)|i,jV,andij;3)asetofpositiveedgeweightsforeachedge(i,j).TheneighborhoodofagentiisdefinedbyNi.=j|ijVi.Letrirepresentthepositionofagenti,andletvibeitsvelocityvector.Thekinematicsofeachunit-speedagentisAuthorizedlicenseduselimitedto:NanchangUniversity.DownloadedonJanuary12,2010at20:02fromIEEEXplore.Restrictionsapply.MOSHTAGHetal.:VISION-BASED,DISTRIBUTEDCONTROLLAWSFORMOTIONCOORDINATIONOFNONHOLONOMICROBOTS853Fig.1.TrajectoryofeachagentisrepresentedbyaplanarFrenetframe.givenbyri=vivi=ivivi=ivi(1)whereviistheunitvectorperpendiculartothevelocityvectorvi(seeFig.1).Theorthogonalpairvi,viformsabodyframeforagenti.Werepresentthestackvectorofallthevelocitiesbyv=vT1,.,vTnTR2n1.Thecontrolinputforeachagentistheangularvelocityi.Sinceitisassumedthattheagentsmovewithconstantunitspeed,theforceappliedtoeachagentmustbeperpendiculartoitsvelocityvector,i.e.,theforceoneachagentisagyroscopicforce,anditdoesnotchangeitsspeed(andhence,itskineticenergy).Thus,iservesasasteeringcontrol16foreachagent.Letusformallydefinetheformationsthatwearegoingtoconsider.Definition2(Parallelformation):Theconfigurationinwhichtheheadingsofallagentsarethesameandvelocityvectorsarealignediscalledtheparallelformation.Notethatinthisdefinition,wedonotconsiderthevalueoftheagreeduponvelocitybutjustthefactthattheagreementhasbeenreached.Attheequilibrium,therelativedistancesoftheagentsdeterminetheshapeoftheformation.Anotherinterestingfamilyofformationsisthebalancedcircularformation.Definition3(Balancedcircularformation):Theconfigurationwheretheagentsaremovingonthesamecirculartrajectoryandthegeometriccenteroftheagentsisfixediscalledthebalancedcircularformation.Theshapeofsuchaformationcanberepresentedbyanappropriateregularpolygon.Inthefollowingsections,westudyeachformationanddesignitscorrespondingdistributedcontrollaw.V.PARALLELFORMATIONSOurgoalinthissectionistodesignacontrollawforeachagentsothattheheadingsofthemobileagentsreachanagree-ment,i.e.,theirvelocityvectorsarealigned,thusresultinginaswarm-likepattern.ForanarbitraryconnectivitygraphG,con-sidertheLaplacianmatrixL.We,therefore,defineameasureofmisalignmentasfollows27,35:w(v)=12summationdisplayij|vivj|2=12v,Lv(2)wherethesummationisoverallthepairs(i,j)E,andL=LI2R2n2n,withI2beingthe22identitymatrix.Thetimederivativeofw(v)isgivenbyw(v)=nsummationdisplayi=1vi,(Lv)i=nsummationdisplayi=1ivi,(Lv)iwhere(Lv)iR2isthesubvectorofLvassociatedwiththeithagent.Thus,thefollowinggradientcontrollawguaranteesthatthepotentialw(v)decreasesmonotonically:i=vi,(Lv)i=summationdisplayjNivi,vij(3)where0isthegain,andvij=vjvi.Remark1:Letirepresenttheheadingofagentiasmeasuredinafixedworldframe(seeFig.1).Theunitvelocityvectorvianditsorthogonalvectorviaregivenbyvi=cosisiniTandvi=sinicosiT.Thus,thecontrolinput(3)becomesi=summationdisplayjNisin(ij),0.(6)Thefollowingtwotheorems28presenttheresultswhenbalancedcircularformationsareattainedforagroupofunit-speedagentswithfixedconnectivitygraphs.Theorem2isforthecasewhenGisacompletegraph,andTheorem3isfortheringgraph.Theorem2:Considerasystemofnagentswithkinematics(5).GivenacompleteconnectivitygraphGandapplyingcontrollaw(6),then-agentsystem(almost)globallyasymptoticallyconvergestoabalancedcircularformation,whichisdefinedinDefinition3.Proof:See28fortheproof.squaresolidThereasonfor“almostglobal”stabilityofthesetofbal-ancedstatesisthatthereisameasure-zerosetofstateswheretheequilibriumisunstable.Thissetischaracterizedbythoseconfigurationsthatmagentsareatantipodalpositionfromtheothernmagents,where1mn/2.Next,weconsiderthesituationthattheconnectivitygraphhasaringtopologyGring.Theorem3:Considerasystemofnagentswithkinematics(5).SupposetheconnectivitygraphhastheringtopologyGringandthateachag
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一個(gè)有趣的童話冒險(xiǎn)故事14篇范文
- 2025年教師資格證綜合素質(zhì)(中學(xué))筆試預(yù)測試卷:教育法律法規(guī)深度解析
- 想象作文我的田園之夢550字11篇
- 秋天的田野美麗的景色描寫14篇
- 因數(shù)中間或末尾有零的乘法質(zhì)量檢測題
- 感恩的心感恩父母的故事記事(10篇)
- 食品安全法律法規(guī)專項(xiàng)復(fù)習(xí)題庫卷
- 煙雨江南350字(15篇)
- 2025年摩托車維修工(初級(jí))考試試卷:摩托車維修行業(yè)創(chuàng)新思維培養(yǎng)
- 最美的風(fēng)景線作文寫人14篇
- 國開2024年秋《教育心理學(xué)》形成性考核1-4答案
- 河南省商丘市梁園區(qū)2023-2024學(xué)年五年級(jí)下學(xué)期期末教學(xué)效果評(píng)估語文試題
- DB11-T 1446-2017 回彈法、超聲回彈綜合法檢測泵送混凝土抗壓強(qiáng)度技術(shù)規(guī)程
- Unit8Birthdays(Storytime)(教學(xué)設(shè)計(jì))譯林版英語五年級(jí)下冊
- 合肥市45中2023-2024學(xué)年英語七下期末經(jīng)典模擬試題含答案
- 2024年度中學(xué)階段漢字聽寫大會(huì)競賽練習(xí)題庫
- 中考化學(xué)專題:質(zhì)量守恒教學(xué)設(shè)計(jì) 人教版
- 2023年全國職業(yè)院校技能大賽-融媒體內(nèi)容策劃與制作賽項(xiàng)規(guī)程
- 華師大版九年級(jí)(初三)科學(xué)上冊全套課件
- 有關(guān)構(gòu)建政務(wù)信息系統(tǒng)密碼應(yīng)用管理體系的建議
- 新能源汽車動(dòng)力蓄電池及管理技術(shù) 課件 模塊二 動(dòng)力蓄電池管理系統(tǒng)功能和技術(shù)認(rèn)知
評(píng)論
0/150
提交評(píng)論