

免費(fèi)預(yù)覽已結(jié)束,剩余41頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高考數(shù)學(xué)常用公式及結(jié)論200條 集合l 元素與集合的關(guān)系,.l 德摩根公式 .l 包含關(guān)系的等價(jià)條件l 容斥原理(CardA是集合A中元素的個(gè)數(shù)).l 集合的子集個(gè)數(shù)共有 個(gè);真子集有1個(gè);非空子集有 1個(gè);非空的真子集有2個(gè).l 集合A中有M個(gè)元素,集合B中有N個(gè)元素,則可以構(gòu)造M*N個(gè)從集合A到集合B的映射;二次函數(shù),二次方程l 二次函數(shù)的解析式的三種形式(1)一般式;(2)頂點(diǎn)式;(3)零點(diǎn)式.l 解連不等式常有以下轉(zhuǎn)化形式.l 方程在上有且只有一個(gè)實(shí)根,與不等價(jià),前者是后者的一個(gè)必要而不是充分條件.l 特別地, 方程有且只有一個(gè)實(shí)根在內(nèi),等價(jià)于,或且,或且.l 閉區(qū)間上的二次函數(shù)的最值 二次函數(shù)在閉區(qū)間上的最值只能在處及區(qū)間的兩端點(diǎn)處取得,具體如下表:二次函數(shù)在閉區(qū)間上的最大、最小值問題探討設(shè),則二次函數(shù)在閉區(qū)間上的最大、最小值有如下的分布情況:即圖象最大、最小值對于開口向下的情況,討論類似。其實(shí)無論開口向上還是向下,都只有以下兩種結(jié)論:(1)若,則,;(2)若,則,另外,當(dāng)二次函數(shù)開口向上時(shí),自變量的取值離開軸越遠(yuǎn),則對應(yīng)的函數(shù)值越大;反過來,當(dāng)二次函數(shù)開口向下時(shí),自變量的取值離開軸越遠(yuǎn),則對應(yīng)的函數(shù)值越小。l 一元二次方程根的分布情況分布情況兩個(gè)負(fù)根即兩根都小于0兩個(gè)正根即兩根都大于0一正根一負(fù)根即一個(gè)根小于0,一個(gè)大于0大致圖象()得出的結(jié)論大致圖象()得出的結(jié)論綜合結(jié)論(不討論)表一:(兩根與0的大小比較即根的正負(fù)情況,注意:用韋達(dá)定理也可以)設(shè)方程的不等兩根為且,相應(yīng)的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點(diǎn),它們的分布情況見下面各表(每種情況對應(yīng)的均是充要條件)分布情況兩根都小于即兩根都大于即一個(gè)根小于,一個(gè)大于即大致圖象()得出的結(jié)論大致圖象()得出的結(jié)論綜合結(jié)論(不討論)表二:(兩根與的大小比較)分布情況兩根都在內(nèi)兩根有且僅有一根在內(nèi)(圖象有兩種情況,只畫了一種)一根在內(nèi),另一根在內(nèi),大致圖象()得出的結(jié)論或大致圖象()得出的結(jié)論或綜合結(jié)論(不討論)表三:(根在區(qū)間上的分布)根在區(qū)間上的分布還有一種情況:兩根分別在區(qū)間外,即在區(qū)間兩側(cè),(圖形分別如下)需滿足的條件是 (1)時(shí),; (2)時(shí),對以上的根的分布表中一些特殊情況作說明:(1)兩根有且僅有一根在內(nèi)有以下特殊情況: 若或,則此時(shí)不成立,但對于這種情況是知道了方程有一根為或,可以求出另外一根,然后可以根據(jù)另一根在區(qū)間內(nèi),從而可以求出參數(shù)的值。如方程在區(qū)間上有一根,因?yàn)椋?,另一根為,由得即為所求?方程有且只有一根,且這個(gè)根在區(qū)間內(nèi),即,此時(shí)由可以求出參數(shù)的值,然后再將參數(shù)的值帶入方程,求出相應(yīng)的根,檢驗(yàn)根是否在給定的區(qū)間內(nèi),如若不在,舍去相應(yīng)的參數(shù)。如方程有且一根在區(qū)間內(nèi),求的取值范圍。分析:由即得出;由即得出或,當(dāng)時(shí),根,即滿足題意;當(dāng)時(shí),根,故不滿足題意;綜上分析,得出或l 定區(qū)間上含參數(shù)的二次不等式恒成立的條件依據(jù)(1) 在給定區(qū)間的子區(qū)間(形如,不同)上含參數(shù)的二次不等式(為參數(shù))恒成立的充要條件是.(2) 在給定區(qū)間的子區(qū)間上含參數(shù)的二次不等式(為參數(shù))恒成立的充要條件是.(3)恒成立的充要條件是或.簡易邏輯l 真值表 非或且真真假真真真假假真假假真真真假假假真假假 l 常見結(jié)論的否定形式原結(jié)論反設(shè)詞原結(jié)論反設(shè)詞是不是至少有一個(gè)一個(gè)也沒有都是不都是至多有一個(gè)至少有兩個(gè)大于不大于至少有個(gè)至多有()個(gè)小于不小于至多有個(gè)至少有()個(gè)對所有,成立存在某,不成立或且對任何,不成立存在某,成立且或l 四種命題的相互關(guān)系原命題互逆逆命題若則若則互互互為為互否否逆逆否 否否命題逆否命題若非則非互逆若非則非l 充要條件 (1)充分條件:若,則是充分條件.(2)必要條件:若,則是必要條件.(3)充要條件:若,且,則是充要條件.注:如果甲是乙的充分條件,則乙是甲的必要條件;反之亦然.函數(shù)l 函數(shù)的單調(diào)性(1)設(shè)那么上是增函數(shù);上是減函數(shù).(2)設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù).l 如果函數(shù)和都是減函數(shù),則在公共定義域內(nèi),和函數(shù)也是減函數(shù); 如果函數(shù)和在其對應(yīng)的定義域上都是減函數(shù),則復(fù)合函數(shù)是增函數(shù).l 奇偶函數(shù)的圖象特征奇函數(shù)的圖象關(guān)于原點(diǎn)對稱,偶函數(shù)的圖象關(guān)于y軸對稱;在對稱區(qū)間上,奇函數(shù)的單調(diào)性相同,歐函數(shù)相反;,如果一個(gè)函數(shù)的圖象關(guān)于原點(diǎn)對稱,那么這個(gè)函數(shù)是奇函數(shù);如果一個(gè)函數(shù)的圖象關(guān)于y軸對稱,那么這個(gè)函數(shù)是偶函數(shù),如果一個(gè)奇函數(shù)的定義域包括0,則必有f(0)=0;l 若函數(shù)是偶函數(shù),則;若函數(shù)是偶函數(shù),則.l 對于函數(shù)(),恒成立,則函數(shù)的對稱軸是函數(shù);兩個(gè)函數(shù)與 的圖象關(guān)于直線對稱.l 若,則函數(shù)的圖象關(guān)于點(diǎn)對稱; 若,則函數(shù)為周期為的周期函數(shù).l 多項(xiàng)式函數(shù)的奇偶性多項(xiàng)式函數(shù)是奇函數(shù)的偶次項(xiàng)(即奇數(shù)項(xiàng))的系數(shù)全為零.多項(xiàng)式函數(shù)是偶函數(shù)的奇次項(xiàng)(即偶數(shù)項(xiàng))的系數(shù)全為零.l 函數(shù)的圖象的對稱性(1)函數(shù)的圖象關(guān)于直線對稱.(2)函數(shù)的圖象關(guān)于直線對稱.l 兩個(gè)函數(shù)圖象的對稱性(1)函數(shù)與函數(shù)的圖象關(guān)于直線(即軸)對稱.(2)函數(shù)與函數(shù)的圖象關(guān)于直線對稱.(3)函數(shù)和的圖象關(guān)于直線y=x對稱.l 若將函數(shù)的圖象右移、上移個(gè)單位,得到函數(shù)的圖象;若將曲線的圖象右移、上移個(gè)單位,得到曲線的圖象.l 互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系.l 若函數(shù)存在反函數(shù),則其反函數(shù)為,并不是,而函數(shù)是的反函數(shù).l 幾個(gè)常見的函數(shù)方程 (1)正比例函數(shù),.(2)指數(shù)函數(shù),.(3)對數(shù)函數(shù),.(4)冪函數(shù),.(5)余弦函數(shù),正弦函數(shù),. l 幾個(gè)函數(shù)方程的周期(約定a0)(1),則的周期T=a;(2),或,或,或,則的周期T=2a;(3),則的周期T=3a;(4)且,則的周期T=4a;(5),則的周期T=5a;(6),則的周期T=6a.指數(shù)與對數(shù)l 分?jǐn)?shù)指數(shù)冪 (1)(,且).(2)(,且).l 根式的性質(zhì)(1).(2)當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),.l 有理指數(shù)冪的運(yùn)算性質(zhì)(1) .(2) .(3).注: 若a0,p是一個(gè)無理數(shù),則ap表示一個(gè)確定的實(shí)數(shù)上述有理指數(shù)冪的運(yùn)算性質(zhì),對于無理數(shù)指數(shù)冪都適用.l 指數(shù)式與對數(shù)式的互化式 .l 對數(shù)的換底公式 (,且,且, ).推論 (,且,且, ).l 對數(shù)的四則運(yùn)算法則若a0,a1,M0,N0,則(1);(2) ;(3).l 設(shè)函數(shù),記.若的定義域?yàn)?則,且;若的值域?yàn)?則,且.對于的情形,需要單獨(dú)檢驗(yàn).l 對數(shù)換底不等式及其推廣 若,則函數(shù) (1)當(dāng)時(shí),在和上為增函數(shù)., (2)當(dāng)時(shí),在和上為減函數(shù).推論:設(shè),且,則(1).(2).l 平均增長率的問題如果原來產(chǎn)值的基礎(chǔ)數(shù)為N,平均增長率為,則對于時(shí)間的總產(chǎn)值,有.39.數(shù)列的同項(xiàng)公式與前n項(xiàng)的和的關(guān)系( 數(shù)列的前n項(xiàng)的和為).數(shù)列l(wèi) 數(shù)列的前項(xiàng)和與通項(xiàng)的公式; .l 等差數(shù)列的判斷方法:定義法:為等差數(shù)列。 中項(xiàng)法: 為等差數(shù)列。通項(xiàng)公式法:(a,b為常數(shù))為等差數(shù)列。前n項(xiàng)和公式法:(A,B為常數(shù))為等差數(shù)列。l 等差中項(xiàng):若成等差數(shù)列,則A叫做與的等差中項(xiàng),且。l等差數(shù)列的通項(xiàng)公式;其前n項(xiàng)和公式為 .l 等差數(shù)列的性質(zhì):(1)當(dāng)公差時(shí),等差數(shù)列的通項(xiàng)公式是關(guān)于的一次函數(shù),且斜率為公差;前和是關(guān)于的二次函數(shù)且常數(shù)項(xiàng)為0. 等差數(shù)列a中,是n的一次函數(shù),且點(diǎn)(n,)均在直線y =x + (a)上(2)若公差,則為遞增等差數(shù)列,若公差,則為遞減等差數(shù)列,若公差,則為常數(shù)列。(3)對稱性:若是有窮數(shù)列,則與首末兩項(xiàng)等距離的兩項(xiàng)之和都等于首末兩項(xiàng)之和.當(dāng)時(shí),則有,特別地,當(dāng)時(shí),則有.(4) 項(xiàng)數(shù)成等差,則相應(yīng)的項(xiàng)也成等差數(shù)列.即成等差.若、是等差數(shù)列,則、 (、是非零常數(shù))、(公差為),也成等差數(shù)列,而成等比數(shù)列;若是等比數(shù)列,且,則是等差數(shù)列.(5)在等差數(shù)列中,當(dāng)項(xiàng)數(shù)為偶數(shù)時(shí), ;. 項(xiàng)數(shù)為奇數(shù)時(shí), ; ;。(6)單調(diào)性:設(shè)d為等差數(shù)列的公差,則 d0是遞增數(shù)列;d0是遞減數(shù)列;d=0是常數(shù)數(shù)列(7)若等差數(shù)列、的前和分別為、,且,則.(8)設(shè)a,a,a為等差數(shù)列中的三項(xiàng),且a與a,a與a的項(xiàng)距差之比=(1),則a=(9)在等差數(shù)列 a中,S= a,S= b (nm),則S=(ab)l 已知成等差數(shù)列,求的最值問題: 若,d0且滿足,則最小.“首正”的遞減等差數(shù)列中,前項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前項(xiàng)和的最小值是所有非正項(xiàng)之和。法一:由不等式組確定出前多少項(xiàng)為非負(fù)(或非正);法二:因等差數(shù)列前項(xiàng)是關(guān)于的二次函數(shù),故可轉(zhuǎn)化為求二次函數(shù)的最值,但要注意數(shù)列的特殊性。上述兩種方法是運(yùn)用了哪種數(shù)學(xué)思想?(函數(shù)思想),由此你能求一般數(shù)列中的最大或最小項(xiàng)嗎?l 等比數(shù)列的判斷方法:定義法,其中或。l 等比中項(xiàng):如果a、G、b三個(gè)數(shù)成等比數(shù)列,那么G叫做a與b的等比中項(xiàng),即G=.提醒:不是任何兩數(shù)都有等比中項(xiàng),只有同號兩數(shù)才存在等比中項(xiàng),且有兩個(gè)。l 等比數(shù)列的通項(xiàng)公式;其前n項(xiàng)的和公式為或l 等比數(shù)列的性質(zhì):(1)對稱性:若是有窮數(shù)列,則與首末兩項(xiàng)等距離的兩項(xiàng)之積都等于首末兩項(xiàng)之積.即當(dāng)時(shí),則有,特別地,當(dāng)時(shí),則有. (2) 若 a是公比為q的等比數(shù)列,則| a|、a、ka、也是等比數(shù)列,其公比分別為| q |、q、q、。若成等比數(shù)列,則、成等比數(shù)列; 若是等比數(shù)列,且公比,則數(shù)列 ,也是等比數(shù)列。當(dāng),且為偶數(shù)時(shí),數(shù)列 ,是常數(shù)數(shù)列0,它不是等比數(shù)列. 若是等比數(shù)列,且各項(xiàng)均為正數(shù),則成等差數(shù)列。若項(xiàng)數(shù)為3n的等比數(shù)列(q1)前n項(xiàng)和與前n項(xiàng)積分別為S與T,次n項(xiàng)和與次n項(xiàng)積分別為S與T,最后n項(xiàng)和與n項(xiàng)積分別為S與T,則S,S,S成等比數(shù)列,T,T,T亦成等比數(shù)列 (3) 單調(diào)性:若,或則為遞增數(shù)列;若,或 則為遞減數(shù)列;若,則為擺動(dòng)數(shù)列;若,則為常數(shù)列.(4) 當(dāng)時(shí),這里,但,這是等比數(shù)列前項(xiàng)和公式的一個(gè)特征,據(jù)此很容易根據(jù),判斷數(shù)列是否為等比數(shù)列。如若是等比數(shù)列,且,則 (答:1)(5) .如設(shè)等比數(shù)列的公比為,前項(xiàng)和為,若成等差數(shù)列,則的值為_(答:2)(6) 在等比數(shù)列中,當(dāng)項(xiàng)數(shù)為偶數(shù)時(shí),;項(xiàng)數(shù)為奇數(shù)時(shí),.(7)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列,故常數(shù)數(shù)列僅是此數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。.l 等比差數(shù)列:的通項(xiàng)公式為;其前n項(xiàng)和公式為.l 分期付款(按揭貸款) 每次還款元(貸款元,次還清,每期利率為).三角函數(shù)l 常見三角不等式(1)若,則.(2) 若,則.(3) .l 同角三角函數(shù)的基本關(guān)系式 ,=,.l 正弦、余弦的誘導(dǎo)公式(n為偶數(shù))(n為奇數(shù))(n為偶數(shù))(n為奇數(shù)) l 和角與差角公式 ;.(平方正弦公式);.=(輔助角所在象限由點(diǎn)的象限決定, ).l 半角正余切公式:l 二倍角公式 .l 三倍角公式 .l 三角函數(shù)的周期公式 函數(shù),xR及函數(shù),xR(A,為常數(shù),且A0,0)的周期;函數(shù),(A,為常數(shù),且A0,0)的周期.l 正弦定理.l 余弦定理;.l 面積定理(1)(分別表示a、b、c邊上的高).(2).(3).l 三角形內(nèi)角和定理 在ABC中,有.l 在三角形中有下列恒等式: l 簡單的三角方程的通解 . .特別地,有. .l 最簡單的三角不等式及其解集 . . . .l 角的變形:向量l 實(shí)數(shù)與向量的積的運(yùn)算律設(shè)、為實(shí)數(shù),那么(1) 結(jié)合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)第二分配律:(a+b)=a+b.l 向量的數(shù)量積的運(yùn)算律:(1) ab= ba (交換律);(2)(a)b= (ab)=ab= a(b);(3)(a+b)c= a c +bc.l 平面向量基本定理 如果e1、e 2是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實(shí)數(shù)1、2,使得a=1e1+2e2不共線的向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底l 向量平行的坐標(biāo)表示 設(shè)a=,b=,且b0,則ab(b0).l a與b的數(shù)量積(或內(nèi)積)ab=|a|b|cosl ab的幾何意義數(shù)量積ab等于a的長度|a|與b在a的方向上的投影|b|cos的乘積l 平面向量的坐標(biāo)運(yùn)算(1)設(shè)a=,b=,則a+b=.(2)設(shè)a=,b=,則a-b=. (3)設(shè)A,B,則.(4)設(shè)a=,則a=.(5)設(shè)a=,b=,則ab=.l 兩向量的夾角公式(a=,b=).l 平面兩點(diǎn)間的距離公式 =(A,B).l 向量的平行與垂直 設(shè)a=,b=,且b0,則A|bb=a .ab(a0)ab=0.l 線段的定比分公式 設(shè),是線段的分點(diǎn),是實(shí)數(shù),且,則().l 三角形的重心坐標(biāo)公式 ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為、,則ABC的重心的坐標(biāo)是.l 點(diǎn)的平移公式 .注:圖形F上的任意一點(diǎn)P(x,y)在平移后圖形上的對應(yīng)點(diǎn)為,且的坐標(biāo)為.l “按向量平移”的幾個(gè)結(jié)論(1)點(diǎn)按向量a=平移后得到點(diǎn).(2) 函數(shù)的圖象按向量a=平移后得到圖象,則的函數(shù)解析式為.(3) 圖象按向量a=平移后得到圖象,若的解析式,則的函數(shù)解析式為.(4)曲線:按向量a=平移后得到圖象,則的方程為.(5) 向量m=按向量a=平移后得到的向量仍然為m=.l 三角形五“心”向量形式的充要條件設(shè)為所在平面上一點(diǎn),角所對邊長分別為,則(1)為的外心.(2)為的重心.(3)為的垂心.(4)為的內(nèi)心.(5)為的的旁心.不等式l 常用不等式:(1)(當(dāng)且僅當(dāng)ab時(shí)取“=”號)(2)(當(dāng)且僅當(dāng)ab時(shí)取“=”號)(3)(4)柯西不等式(5).l 極值定理已知都是正數(shù),則有(1)若積是定值,則當(dāng)時(shí)和有最小值;(2)若和是定值,則當(dāng)時(shí)積有最大值.推廣 已知,則有(1)若積是定值,則當(dāng)最大時(shí),最大;當(dāng)最小時(shí),最小.(2)若和是定值,則當(dāng)最大時(shí), 最??;當(dāng)最小時(shí), 最大.l 一元二次不等式,如果與同號,則其解集在兩根之外;如果與異號,則其解集在兩根之間.簡言之:同號兩根之外,異號兩根之間.;.l 含有絕對值的不等式 當(dāng)a 0時(shí),有.或.75.無理不等式(1) .(2).(3).l 指數(shù)不等式與對數(shù)不等式 (1)當(dāng)時(shí),; .(2)當(dāng)時(shí),;直線方程l 斜率公式 (、). k=tan(為直線傾斜角)l 直線的五種方程 (1)點(diǎn)斜式 (直線過點(diǎn),且斜率為)(2)斜截式 (b為直線在y軸上的截距).(3)兩點(diǎn)式 ()(、 ().(4)截距式 (分別為直線的橫、縱截距,)(5)一般式 (其中A、B不同時(shí)為0).l 兩條直線的平行和垂直 (1)若,;.(2)若,且A1、A2、B1、B2都不為零,;兩直線垂直的充要條件是 ;即:l 夾角公式 (1).(,,)(2).(,).直線時(shí),直線l1與l2的夾角是.l 到的角公式 (1).(,,)(2).(,).直線時(shí),直線l1到l2的角是.l 四種常用直線系方程 (1)定點(diǎn)直線系方程:經(jīng)過定點(diǎn)的直線系方程為(除直線),其中是待定的系數(shù); 經(jīng)過定點(diǎn)的直線系方程為,其中是待定的系數(shù)(2)共點(diǎn)直線系方程:經(jīng)過兩直線,的交點(diǎn)的直線系方程為(除),其中是待定的系數(shù)(3)平行直線系方程:直線中當(dāng)斜率k一定而b變動(dòng)時(shí),表示平行直線系方程與直線平行的直線系方程是(),是參變量(4)垂直直線系方程:與直線 (A0,B0)垂直的直線系方程是,是參變量l 點(diǎn)到直線的距離 (點(diǎn),直線:).l 或所表示的平面區(qū)域設(shè)直線,若A0,則在坐標(biāo)平面內(nèi)從左至右的區(qū)域依次表示 ,若A0,則在坐標(biāo)平面內(nèi)從左至右的區(qū)域依次表示 ,可記為“x 為正開口對,X為負(fù)背靠背“。(正負(fù)指X的系數(shù)A,開口對指”,背靠背指0)的焦點(diǎn)F的直線與拋物線相交于圓錐曲線共性問題l 兩個(gè)常見的曲線系方程(1)過曲線,的交點(diǎn)的曲線系方程是(為參數(shù)).(2)共焦點(diǎn)的有心圓錐曲線系方程,其中.當(dāng)時(shí),表示橢圓; 當(dāng)時(shí),表示雙曲線.l 直線與圓錐曲線相交的弦長公式 或(弦端點(diǎn)A由方程 消去y得到,,為直線的傾斜角,為直線的斜率). l 涉及到曲線上的 點(diǎn)A,B及線段AB的中點(diǎn)M的關(guān)系時(shí),可以利用“點(diǎn)差法:,比如在橢圓中:l 圓錐曲線的兩類對稱問題(1)曲線關(guān)于點(diǎn)成中心對稱的曲線是.(2)曲線關(guān)于直線成軸對稱的曲線是.l “四線”一方程 對于一般的二次曲線,用代,用代,用代,用代,用代即得方程,曲線的切線,切點(diǎn)弦,中點(diǎn)弦,弦中點(diǎn)方程均是此方程得到.立體幾何109證明直線與直線的平行的思考途徑(1)轉(zhuǎn)化為判定共面二直線無交點(diǎn);(2)轉(zhuǎn)化為二直線同與第三條直線平行;(3)轉(zhuǎn)化為線面平行;(4)轉(zhuǎn)化為線面垂直;(5)轉(zhuǎn)化為面面平行.110證明直線與平面的平行的思考途徑(1)轉(zhuǎn)化為直線與平面無公共點(diǎn);(2)轉(zhuǎn)化為線線平行;(3)轉(zhuǎn)化為面面平行.111證明平面與平面平行的思考途徑(1)轉(zhuǎn)化為判定二平面無公共點(diǎn);(2)轉(zhuǎn)化為線面平行;(3)轉(zhuǎn)化為線面垂直.112證明直線與直線的垂直的思考途徑(1)轉(zhuǎn)化為相交垂直;(2)轉(zhuǎn)化為線面垂直;(3)轉(zhuǎn)化為線與另一線的射影垂直;(4)轉(zhuǎn)化為線與形成射影的斜線垂直.113證明直線與平面垂直的思考途徑(1)轉(zhuǎn)化為該直線與平面內(nèi)任一直線垂直;(2)轉(zhuǎn)化為該直線與平面內(nèi)相交二直線垂直;(3)轉(zhuǎn)化為該直線與平面的一條垂線平行;(4)轉(zhuǎn)化為該直線垂直于另一個(gè)平行平面;(5)轉(zhuǎn)化為該直線與兩個(gè)垂直平面的交線垂直.114證明平面與平面的垂直的思考途徑(1)轉(zhuǎn)化為判斷二面角是直二面角;(2)轉(zhuǎn)化為線面垂直.115.空間向量的加法與數(shù)乘向量運(yùn)算的運(yùn)算律(1)加法交換律:ab=ba(2)加法結(jié)合律:(ab)c=a(bc)(3)數(shù)乘分配律:(ab)=ab116.平面向量加法的平行四邊形法則向空間的推廣始點(diǎn)相同且不在同一個(gè)平面內(nèi)的三個(gè)向量之和,等于以這三個(gè)向量為棱的平行六面體的以公共始點(diǎn)為始點(diǎn)的對角線所表示的向量.117.共線向量定理對空間任意兩個(gè)向量a、b(b0 ),ab存在實(shí)數(shù)使a=b三點(diǎn)共線.、共線且不共線且不共線.118.共面向量定理 向量p與兩個(gè)不共線的向量a、b共面的存在實(shí)數(shù)對,使推論 空間一點(diǎn)P位于平面MAB內(nèi)的存在有序?qū)崝?shù)對,使,或?qū)臻g任一定點(diǎn)O,有序?qū)崝?shù)對,使.119.對空間任一點(diǎn)和不共線的三點(diǎn)A、B、C,滿足(),則當(dāng)時(shí),對于空間任一點(diǎn),總有P、A、B、C四點(diǎn)共面;當(dāng)時(shí),若平面ABC,則P、A、B、C四點(diǎn)共面;若平面ABC,則P、A、B、C四點(diǎn)不共面四點(diǎn)共面與、共面(平面ABC).120.空間向量基本定理 如果三個(gè)向量a、b、c不共面,那么對空間任一向量p,存在一個(gè)唯一的有序?qū)崝?shù)組x,y,z,使pxaybzc推論 設(shè)O、A、B、C是不共面的四點(diǎn),則對空間任一點(diǎn)P,都存在唯一的三個(gè)有序?qū)崝?shù)x,y,z,使.121.射影公式已知向量=a和軸,e是上與同方向的單位向量.作A點(diǎn)在上的射影,作B點(diǎn)在上的射影,則a,e=ae122.向量的直角坐標(biāo)運(yùn)算設(shè)a,b則(1)ab;(2)ab;(3)a (R);(4)ab;123.設(shè)A,B,則= .124空間的線線平行或垂直設(shè),則;.125.夾角公式 設(shè)a,b,則cosa,b=.推論 ,此即三維柯西不等式.126. 四面體的對棱所成的角四面體中, 與所成的角為,則.127異面直線所成角=(其中()為異面直線所成角,分別表示異面直線的方向向量)128.直線與平面所成角(為平面的法向量).129.若所在平面若與過若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個(gè)內(nèi)角,則.特別地,當(dāng)時(shí),有.130.若所在平面若與過若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個(gè)內(nèi)角,則.特別地,當(dāng)時(shí),有.131.二面角的平面角或(,為平面,的法向量).132.三余弦定理設(shè)AC是內(nèi)的任一條直線,且BCAC,垂足為C,又設(shè)AO與AB所成的角為,AB與AC所成的角為,AO與AC所成的角為則.133. 三射線定理若夾在平面角為的二面角間的線段與二面角的兩個(gè)半平面所成的角是,與二面角的棱所成的角是,則有 ;(當(dāng)且僅當(dāng)時(shí)等號成立).134.空間兩點(diǎn)間的距離公式 若A,B,則 =.135.點(diǎn)到直線距離(點(diǎn)在直線上,直線的方向向量a=,向量b=).136.異面直線間的距離 (是兩異面直線,其公垂向量為,分別是上任一點(diǎn),為間的距離).137.點(diǎn)到平面的距離 (為平面的法向量,是經(jīng)過面的一條斜線,).138.異面直線上兩點(diǎn)距離公式 .(). (兩條異面直線a、b所成的角為,其公垂線段的長度為h.在直線a、b上分別取兩點(diǎn)E、F,,). 139.三個(gè)向量和的平方公式 140. 長度為的線段在三條兩兩互相垂直的直線上的射影長分別為,夾角分別為,則有.(立體幾何中長方體對角線長的公式是其特例).141. 面積射影定理 .(平面多邊形及其射影的面積分別是、,它們所在平面所成銳二面角的為).142. 斜棱柱的直截面已知斜棱柱的側(cè)棱長是,側(cè)面積和體積分別是和,它的直截面的周長和面積分別是和,則.143作截面的依據(jù)三個(gè)平面兩兩相交,有三條交線,則這三條交線交于一點(diǎn)或互相平行.144棱錐的平行截面的性質(zhì)如果棱錐被平行于底面的平面所截,那么所得的截面與底面相似,截面面積與底面面積的比等于頂點(diǎn)到截面距離與棱錐高的平方比(對應(yīng)角相等,對應(yīng)邊對應(yīng)成比例的多邊形是相似多邊形,相似多邊形面積的比等于對應(yīng)邊的比的平方);相應(yīng)小棱錐與小棱錐的側(cè)面積的比等于頂點(diǎn)到截面距離與棱錐高的平方比145.歐拉定理(歐拉公式) (簡單多面體的頂點(diǎn)數(shù)V、棱數(shù)E和面數(shù)F).(1)=各面多邊形邊數(shù)和的一半.特別地,若每個(gè)面的邊數(shù)為的多邊形,則面數(shù)F與棱數(shù)E的關(guān)系:;(2)若每個(gè)頂點(diǎn)引出的棱數(shù)為,則頂點(diǎn)數(shù)V與棱數(shù)E的關(guān)系:.146.球的半徑是R,則其體積,其表面積147.球的組合體 (1)球與長方體的組合體: 長方體的外接球的直徑是長方體的體對角線長. (2)球與正方體的組合體:正方體的內(nèi)切球的直徑是正方體的棱長, 正方體的棱切球的直徑是正方體的面對角線長, 正方體的外接球的直徑是正方體的體對角線長. (3) 球與正四面體的組合體: 棱長為的正四面體的內(nèi)切球的半徑為,外接球的半徑為.148柱體、錐體的體積(是柱體的底面積、是柱體的高).(是錐體的底面積、是錐體的高).排列組合l 分類計(jì)數(shù)原理(加法原理).l 分步計(jì)數(shù)原理(乘法原理).l 排列數(shù)公式 =.(,N*,且)注:規(guī)定.l 排列恒等式 (1);(2);(3); (4);(5).(6) .l 組合數(shù)公式 =(N*,且).l 組合數(shù)的兩個(gè)性質(zhì)(1)= ;(2) +=.注:規(guī)定.l 組合恒等式(1);(2);(3); (4)=;(5).(6).(7). (8).(9).(10).l 排列數(shù)與組合數(shù)的關(guān)系 .l 單條件排列以下各條的大前提是從個(gè)元素中取個(gè)元素的排列.(1)“在位”與“不在位”某(特)元必在某位有種;某(特)元不在某位有(補(bǔ)集思想)(著眼位置)(著眼元素)種.(2)緊貼與插空(即相鄰與不相鄰)定位緊貼:個(gè)元在固定位的排列有種.浮動(dòng)緊貼:個(gè)元素的全排列把k個(gè)元排在一起的排法有種.注:此類問題常用捆綁法;插空:兩組元素分別有k、h個(gè)(),把它們合在一起來作全排列,k個(gè)的一組互不能挨近的所有排列數(shù)有種.(3)兩組元素各相同的插空 個(gè)大球個(gè)小球排成一列,小球必分開,問有多少種排法?當(dāng)時(shí),無解;當(dāng)時(shí),有種排法.(4)兩組相同元素的排列:兩組元素有m個(gè)和n個(gè),各組元素分別相同的排列數(shù)為.l 分配問題(1)(平均分組有歸屬問題)將相異的、個(gè)物件等分給個(gè)人,各得件,其分配方法數(shù)共有.(2)(平均分組無歸屬問題)將相異的個(gè)物體等分為無記號或無順序的堆,其分配方法數(shù)共有.(3)(非平均分組有歸屬問題)將相異的個(gè)物體分給個(gè)人,物件必須被分完,分別得到,件,且,這個(gè)數(shù)彼此不相等,則其分配方法數(shù)共有.(4)(非完全平均分組有歸屬問題)將相異的個(gè)物體分給個(gè)人,物件必須被分完,分別得到,件,且,這個(gè)數(shù)中分別有a、b、c、個(gè)相等,則其分配方法數(shù)有 .(5)(非平均分組無歸屬問題)將相異的個(gè)物體分為任意的,件無記號的堆,且,這個(gè)數(shù)彼此不相等,則其分配方法數(shù)有.(6)(非完全平均分組無歸屬問題)將相異的個(gè)物體分為任意的,件無記號的堆,且,這個(gè)數(shù)中分別有a、b、c、個(gè)相等,則其分配方法數(shù)有.(7)(限定分組有歸屬問題)將相異的()個(gè)物體分給甲、乙、丙,等個(gè)人,物體必須被分完,如果指定甲得件,乙得件,丙得件,時(shí),則無論,等個(gè)數(shù)是否全相異或不全相異其分配方法數(shù)恒有.l “錯(cuò)位問題”及其推廣貝努利裝錯(cuò)箋問題:信封信與個(gè)信封全部錯(cuò)位的組合數(shù)為.推廣: 個(gè)元素與個(gè)位置,其中至少有個(gè)元素錯(cuò)位的不同組合總數(shù)為.l 不定方程的解的個(gè)數(shù)(1)方程()的正整數(shù)解有個(gè).(2) 方程()的非負(fù)整數(shù)解有 個(gè).(3) 方程()滿足條件(,)的非負(fù)整數(shù)解有個(gè).(4) 方程()滿足條件(,)的正整數(shù)解有個(gè).l 二項(xiàng)式定理 ;二項(xiàng)展開式的通項(xiàng)公式.概率l 等可能性事件的概率.l 互斥事件A,B分別發(fā)生的概率的和P(AB)=P(A)P(B)l 個(gè)互斥事件分別發(fā)生的概率的和P(A1A2An)=P(A1)P(A2)P(An)l 獨(dú)立事件A,B同時(shí)發(fā)生的概率P(AB)= P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)境保護(hù)與節(jié)能減排教育培訓(xùn)
- 小兒肺炎的臨床表現(xiàn)及護(hù)理
- 幼兒健康活動(dòng)保護(hù)耳朵
- 領(lǐng)導(dǎo)講安全課件
- 顱骨修補(bǔ)術(shù)后護(hù)理課件
- 顱內(nèi)占位護(hù)理課件
- 胃癌腹腔鏡手術(shù)護(hù)理常規(guī)
- 預(yù)防欺凌主題班會課件
- 《機(jī)械設(shè)計(jì)基礎(chǔ)》課件-第13章 軸
- 預(yù)防兒童溺水課件
- 招商大使選聘管理辦法
- 2025年中國鐵路集團(tuán)招聘筆試備考題庫(帶答案詳解)
- 用工風(fēng)險(xiǎn)培訓(xùn)課件
- 海外現(xiàn)場安全健康環(huán)境管理(HSE)
- 2025年公安機(jī)關(guān)人民警察(行政執(zhí)法)資格考試(客觀題及刑法)含答案
- DLT 5035-2016 發(fā)電廠供暖通風(fēng)與空氣調(diào)節(jié)設(shè)計(jì)規(guī)范
- DZ∕T 0201-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 鎢、錫、汞、銻(正式版)
- 小小科學(xué)家《物理》模擬試卷A(附答案)
- 《風(fēng)電場項(xiàng)目經(jīng)濟(jì)評價(jià)規(guī)范》(NB-T 31085-2016)
- 檢驗(yàn)科員工個(gè)人技術(shù)檔案
- 企業(yè)拆除前現(xiàn)場清查登記表
評論
0/150
提交評論