




已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
叮叮小文庫幻方常規(guī)解法匯總 按目前填寫幻方的方法,是把幻方分成了三類,即奇數(shù)階幻方、雙偶階幻方、單偶階幻方。下面按這三類幻方,列出最常用解法(考試用,不求強(qiáng)大,只求有效?。?。奇數(shù)階幻方(羅伯法)奇數(shù)階幻方最經(jīng)典的填法是羅伯法。填寫的方法是:把1(或最小的數(shù))放在第一行正中; 按以下規(guī)律排列剩下的(nn1)個數(shù): 1、每一個數(shù)放在前一個數(shù)的右上一格; 2、如果這個數(shù)所要放的格已經(jīng)超出了頂行那么就把它放在底行,仍然要放在右一列; 3、如果這個數(shù)所要放的格已經(jīng)超出了最右列那么就把它放在最左列,仍然要放在上一行; 4、如果這個數(shù)所要放的格已經(jīng)超出了頂行且超出了最右列,那么就把它放在前一個數(shù)的下一行同一列的格內(nèi); 5、如果這個數(shù)所要放的格已經(jīng)有數(shù)填入,那么就把它放在前一個數(shù)的下一行同一列的格內(nèi)。例,用該填法獲得的5階幻方:17241815235714164613202210121921311182529雙偶數(shù)階幻方(對稱交換法) 所謂雙偶階幻方就是當(dāng)n可以被4整除時的偶階幻方,即4K階幻方。在說解法之前我們先說明一個“互補(bǔ)數(shù)”定義:就是在 n 階幻方中,如果兩個數(shù)的和等于幻方中最大的數(shù)與 1 的和(即 nn1),我們稱它們?yōu)橐粚パa(bǔ)數(shù) 。如在三階幻方中,每一對和為 10 的數(shù),是一對互補(bǔ)數(shù) ;在四階幻方中,每一對和為 17 的數(shù),是一對互補(bǔ)數(shù) 。雙偶數(shù)階幻方的對稱交換解法:先看看4階幻方的填法:將數(shù)字從左到右、從上到下按順序填寫:12345678910111213141516 內(nèi)外四個角對角上互補(bǔ)的數(shù)相易,(方陣分為兩個正方形,外大內(nèi)小,然后把大正方形的四個對角上的數(shù)字對換,小正方形四個對角上的數(shù)字對換)即(1,16)(4,13)互換(6,11)(7,10)互換即可。16231351110897612414151 對于n=4k階幻方,我們先把數(shù)字按順序填寫。寫好后,按44把它劃分成kk個方陣。因?yàn)閚是4的倍數(shù),一定能用44的小方陣分割。然后把每個小方陣的對角線,象制作4階幻方的方法一樣,對角線上的數(shù)字換成互補(bǔ)的數(shù)字,就構(gòu)成幻方。以8階幻方為例: (1) 先把數(shù)字按順序填。然后,按44把它分割成4塊(如圖)12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364(2) 每個小方陣對角線上的數(shù)字(如左上角小方陣部分),換成和它互補(bǔ)的數(shù)。64236160675795554121351501617474620214342244026273736303133323435292838392541232244451918484915145253111056858595462631單偶數(shù)階幻方(象限對稱交換法)以n=10為例,10422,這時k=2(1)把方陣分為A,B,C,D四個象限,這樣每一個象限肯定是奇數(shù)階。用羅伯法,依次在A象限,D象限,B象限,C象限按奇數(shù)階幻方的填法填數(shù)。(2)在A象限的中間行、中間格開始,按自左向右的方向,標(biāo)出k格。A象限的其它行則標(biāo)出最左邊的k格。將這些格,和C象限相對位置上的數(shù),互換位置。(3)在B象限任一行的中間格,自右向左,標(biāo)出k-1列。(注:6階幻方由于k-1=0,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 倉儲物流信息化管理與運(yùn)輸服務(wù)合同
- 跨國公司境內(nèi)股權(quán)轉(zhuǎn)讓及稅務(wù)籌劃協(xié)議
- 生態(tài)柴油購銷合同范本與規(guī)范
- 成都租賃合同(含租客租后押金退還)
- 民宿民宿風(fēng)格改造裝修合同
- 互聯(lián)網(wǎng)保險保本投資協(xié)議
- 北京二手房交易稅費(fèi)減免咨詢與代理合同
- 餐飲店拆伙協(xié)議及員工安置合同
- 時尚購物廣場門面房租賃與品牌合作合同
- 腫瘤的影像學(xué)診斷
- 2024-2025年上海中考英語真題及答案解析
- 《網(wǎng)架結(jié)構(gòu)》課件
- 黑惡線索核查線上培訓(xùn)課件
- 虛擬貨幣與數(shù)字資產(chǎn)交易培訓(xùn)資料
- 火電廠危險化學(xué)品安全管理課件
- JB-T 4149-2022 臂式斗輪堆取料機(jī)
- 電梯維保服務(wù)投標(biāo)方案
- 2023年資產(chǎn)負(fù)債表模板
- 01SS105給排水常用儀表及特種閥門安裝圖集
- 【VCGE06】昌平區(qū)2020-2021學(xué)年第二學(xué)期高二年級期末質(zhì)量抽測
- 小學(xué)四年級英語答題卡(Word版可以編輯修改)
評論
0/150
提交評論