湖南大學(xué)《數(shù)據(jù)分析思維與方法》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
湖南大學(xué)《數(shù)據(jù)分析思維與方法》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
湖南大學(xué)《數(shù)據(jù)分析思維與方法》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
湖南大學(xué)《數(shù)據(jù)分析思維與方法》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)湖南大學(xué)

《數(shù)據(jù)分析思維與方法》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)是一種重要的存儲(chǔ)和管理數(shù)據(jù)的方式。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)可以將來(lái)自不同數(shù)據(jù)源的數(shù)據(jù)整合在一起B(yǎng).數(shù)據(jù)倉(cāng)庫(kù)可以提供高效的數(shù)據(jù)查詢(xún)和分析功能C.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)是實(shí)時(shí)更新的,反映了最新的業(yè)務(wù)狀態(tài)D.數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要投入大量的時(shí)間和資源2、對(duì)于一個(gè)具有大量數(shù)據(jù)的數(shù)據(jù)庫(kù),若要提高查詢(xún)效率,以下哪種技術(shù)可能會(huì)被使用?()A.緩存B.分區(qū)C.索引優(yōu)化D.以上都是3、假設(shè)要對(duì)海量圖像數(shù)據(jù)進(jìn)行分析,以下關(guān)于圖像數(shù)據(jù)分析方法的描述,正確的是:()A.直接使用傳統(tǒng)的數(shù)據(jù)分析方法處理圖像數(shù)據(jù),效果良好B.基于深度學(xué)習(xí)的圖像識(shí)別算法能夠自動(dòng)提取圖像的特征C.圖像數(shù)據(jù)的分辨率對(duì)分析結(jié)果沒(méi)有影響D.不需要對(duì)圖像數(shù)據(jù)進(jìn)行預(yù)處理,直接輸入模型進(jìn)行分析4、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的性能優(yōu)化是一個(gè)重要的問(wèn)題。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化可以提高數(shù)據(jù)查詢(xún)和分析的效率B.數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化可以通過(guò)優(yōu)化數(shù)據(jù)存儲(chǔ)結(jié)構(gòu)、索引設(shè)計(jì)和查詢(xún)語(yǔ)句等方法來(lái)實(shí)現(xiàn)C.數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化需要考慮數(shù)據(jù)的規(guī)模、復(fù)雜度和使用頻率等因素D.數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化只需要關(guān)注硬件設(shè)備的升級(jí)和擴(kuò)展,無(wú)需考慮軟件方面的優(yōu)化5、假設(shè)要分析某網(wǎng)站不同頁(yè)面的訪問(wèn)量分布情況,以下哪種圖表能夠直觀地展示訪問(wèn)量的集中程度和離散程度?()A.直方圖B.箱線圖C.小提琴圖D.以上都不是6、關(guān)于數(shù)據(jù)分析中的客戶(hù)細(xì)分,假設(shè)要根據(jù)客戶(hù)的購(gòu)買(mǎi)行為、人口統(tǒng)計(jì)信息和在線活動(dòng)將客戶(hù)分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶(hù)的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時(shí)間B.基于聚類(lèi)的細(xì)分,自動(dòng)發(fā)現(xiàn)相似群體C.基于決策樹(shù)的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶(hù)細(xì)分,對(duì)所有客戶(hù)采用相同的策略7、在對(duì)一個(gè)社交媒體平臺(tái)的用戶(hù)興趣數(shù)據(jù)進(jìn)行分析,例如關(guān)注的話題、參與的討論組等,以進(jìn)行精準(zhǔn)的廣告投放。以下哪種數(shù)據(jù)挖掘技術(shù)可能在用戶(hù)畫(huà)像和廣告定向中發(fā)揮重要作用?()A.分類(lèi)算法B.聚類(lèi)算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都是8、回歸分析是數(shù)據(jù)分析中的常用方法。假設(shè)要研究廣告投入與銷(xiāo)售額之間的關(guān)系,以下關(guān)于回歸分析的描述,正確的是:()A.簡(jiǎn)單線性回歸足以捕捉廣告投入和銷(xiāo)售額之間的復(fù)雜非線性關(guān)系B.多元線性回歸中,自變量越多,模型的解釋能力就越強(qiáng)C.在建立回歸模型前,不需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理D.回歸模型的擬合優(yōu)度(R2)越高,說(shuō)明模型對(duì)數(shù)據(jù)的擬合效果越好9、在數(shù)據(jù)分析中,聚類(lèi)算法用于將數(shù)據(jù)分為不同的組。假設(shè)我們要對(duì)客戶(hù)進(jìn)行細(xì)分。以下關(guān)于聚類(lèi)算法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.K-Means算法需要事先指定聚類(lèi)的數(shù)量B.層次聚類(lèi)可以形成層次結(jié)構(gòu)的聚類(lèi)結(jié)果C.聚類(lèi)算法的結(jié)果是唯一確定的,不受初始值和參數(shù)的影響D.可以根據(jù)業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)選擇合適的聚類(lèi)算法10、數(shù)據(jù)可視化是數(shù)據(jù)分析的重要手段之一。以下關(guān)于數(shù)據(jù)可視化的作用,不準(zhǔn)確的是()A.數(shù)據(jù)可視化能夠?qū)?fù)雜的數(shù)據(jù)以直觀、易懂的圖形和圖表形式呈現(xiàn),幫助人們快速理解數(shù)據(jù)的含義和趨勢(shì)B.通過(guò)數(shù)據(jù)可視化,可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式、異常值和關(guān)系,為進(jìn)一步的分析提供線索C.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來(lái)更美觀,對(duì)于數(shù)據(jù)分析的實(shí)質(zhì)內(nèi)容沒(méi)有太大幫助D.好的數(shù)據(jù)可視化能夠有效地傳達(dá)信息,支持決策制定,并與他人分享分析結(jié)果11、在數(shù)據(jù)挖掘中,聚類(lèi)分析是一種常用的方法。以下關(guān)于聚類(lèi)分析的描述,錯(cuò)誤的是?()A.可以將數(shù)據(jù)分成不同的類(lèi)別B.類(lèi)別之間的差異明顯C.不需要事先指定類(lèi)別數(shù)量D.聚類(lèi)結(jié)果是絕對(duì)準(zhǔn)確的12、關(guān)于數(shù)據(jù)分析中的多變量分析,假設(shè)要同時(shí)研究多個(gè)自變量對(duì)因變量的影響。以下哪種方法可以幫助我們理解變量之間的復(fù)雜關(guān)系和交互作用?()A.多元線性回歸B.因子分析,提取公共因子C.偏最小二乘回歸D.只研究單個(gè)變量與因變量的關(guān)系13、在數(shù)據(jù)庫(kù)中,若要優(yōu)化數(shù)據(jù)庫(kù)的存儲(chǔ)結(jié)構(gòu),以下哪個(gè)操作可能會(huì)被執(zhí)行?()A.合并表B.拆分表C.增加索引D.以上都是14、假設(shè)要為一家電商企業(yè)進(jìn)行銷(xiāo)售數(shù)據(jù)分析,以預(yù)測(cè)未來(lái)一段時(shí)間內(nèi)的銷(xiāo)售額。數(shù)據(jù)集涵蓋了不同產(chǎn)品類(lèi)別、銷(xiāo)售地區(qū)、銷(xiāo)售時(shí)間等多個(gè)變量。在這種情況下,為了提高預(yù)測(cè)的準(zhǔn)確性,以下哪個(gè)步驟可能是至關(guān)重要的?()A.數(shù)據(jù)清洗和預(yù)處理B.選擇合適的預(yù)測(cè)模型C.對(duì)模型進(jìn)行超參數(shù)調(diào)優(yōu)D.以上都是15、數(shù)據(jù)分析中的數(shù)據(jù)降維技術(shù)常用于減少數(shù)據(jù)的維度。假設(shè)要處理一個(gè)高維的基因表達(dá)數(shù)據(jù)集,以降低計(jì)算復(fù)雜度同時(shí)保留重要信息。以下哪種數(shù)據(jù)降維方法在處理這種生物醫(yī)學(xué)數(shù)據(jù)時(shí)更能有效地實(shí)現(xiàn)降維目標(biāo)?()A.主成分分析(PCA)B.線性判別分析(LDA)C.獨(dú)立成分分析(ICA)D.因子分析16、數(shù)據(jù)分析中的文本挖掘用于從大量文本數(shù)據(jù)中提取有價(jià)值的信息。假設(shè)要從客戶(hù)的評(píng)價(jià)文本中挖掘他們的滿意度,以下關(guān)于文本挖掘的描述,哪一項(xiàng)是不正確的?()A.可以使用詞袋模型將文本轉(zhuǎn)換為數(shù)值向量,以便進(jìn)行后續(xù)的分析B.情感分析能夠判斷文本的情感傾向,如積極、消極或中性C.主題模型可以發(fā)現(xiàn)文本中的潛在主題,但無(wú)法確定每個(gè)文本所屬的具體主題D.文本挖掘不需要對(duì)文本進(jìn)行預(yù)處理,如分詞和去除停用詞17、當(dāng)分析一組數(shù)據(jù)的離散程度時(shí),以下哪個(gè)指標(biāo)不僅考慮了數(shù)據(jù)的偏離程度,還考慮了數(shù)據(jù)的分布形態(tài)?()A.方差B.標(biāo)準(zhǔn)差C.平均差D.變異系數(shù)18、對(duì)于一個(gè)時(shí)間序列數(shù)據(jù),若要預(yù)測(cè)未來(lái)幾個(gè)時(shí)間點(diǎn)的值,以下哪種模型較為適用?()A.移動(dòng)平均模型B.指數(shù)平滑模型C.自回歸模型D.以上都可以19、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)的標(biāo)準(zhǔn)化或歸一化處理常常是必要的。假設(shè)我們有一組特征數(shù)據(jù),取值范圍差異較大,以下哪種標(biāo)準(zhǔn)化方法可以將數(shù)據(jù)映射到特定的區(qū)間,例如[0,1]?()A.最小-最大標(biāo)準(zhǔn)化B.Z-score標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是20、數(shù)據(jù)分析中的特征選擇用于篩選出對(duì)目標(biāo)變量最有預(yù)測(cè)能力的特征。假設(shè)要分析一個(gè)包含數(shù)百個(gè)特征的數(shù)據(jù)集,以預(yù)測(cè)某種疾病的發(fā)生概率。以下哪種特征選擇方法在處理這種高維度數(shù)據(jù)時(shí)更能有效地篩選出關(guān)鍵特征?()A.過(guò)濾式特征選擇B.包裹式特征選擇C.嵌入式特征選擇D.以上方法效果相同二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)簡(jiǎn)述數(shù)據(jù)分析師如何與外部合作伙伴進(jìn)行數(shù)據(jù)共享和合作,包括數(shù)據(jù)安全、法律合規(guī)等方面的考慮。2、(本題5分)在進(jìn)行分類(lèi)模型評(píng)估時(shí),除了準(zhǔn)確率等常見(jiàn)指標(biāo),還有哪些評(píng)估指標(biāo)可以使用?請(qǐng)說(shuō)明這些指標(biāo)的含義和應(yīng)用場(chǎng)景。3、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的可視化探索以發(fā)現(xiàn)潛在的模式和關(guān)系,包括交互式可視化工具的應(yīng)用。4、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的敏感性分析?請(qǐng)說(shuō)明敏感性分析的目的和方法,并舉例說(shuō)明其在決策中的應(yīng)用。5、(本題5分)解釋什么是強(qiáng)化學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用,說(shuō)明其與監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)的區(qū)別,并舉例分析。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線健身課程平臺(tái)擁有課程銷(xiāo)售數(shù)據(jù)、用戶(hù)鍛煉目標(biāo)、課程完成率等。設(shè)計(jì)更有效的健身課程和激勵(lì)機(jī)制。2、(本題5分)某物流企業(yè)掌握了不同運(yùn)輸方式的成本數(shù)據(jù)、運(yùn)輸時(shí)效、貨物損壞率等。探討怎樣利用這些數(shù)據(jù)選擇最優(yōu)的運(yùn)輸方式和優(yōu)化物流方案。3、(本題5分)某餐飲外賣(mài)平臺(tái)收集了商家數(shù)據(jù)、用戶(hù)訂單數(shù)據(jù)、配送數(shù)據(jù)等。分析外賣(mài)市場(chǎng)的競(jìng)爭(zhēng)態(tài)勢(shì),為商家和用戶(hù)提供更好的服務(wù)。4、(本題5分)某在線象棋教學(xué)平臺(tái)積累了學(xué)員對(duì)弈數(shù)據(jù)、棋藝進(jìn)步情況、教學(xué)資源滿意度等。豐富象棋教學(xué)資源,提高教學(xué)質(zhì)量。5、(本題5分)某電商平臺(tái)記錄了用戶(hù)的搜索關(guān)鍵詞、瀏覽商品類(lèi)別、購(gòu)買(mǎi)決策時(shí)間等。探討怎樣利用這些數(shù)據(jù)優(yōu)化搜索引擎和購(gòu)物流程。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)對(duì)于電商平臺(tái)的退換貨數(shù)據(jù),論述如何運(yùn)用數(shù)據(jù)分析找出產(chǎn)品質(zhì)量和服務(wù)的問(wèn)題,改進(jìn)供應(yīng)鏈管理和售后服務(wù)。2、(本題10分)體育行業(yè)越來(lái)越依賴(lài)數(shù)據(jù)分析來(lái)提升運(yùn)動(dòng)員表現(xiàn)、賽事運(yùn)營(yíng)和觀眾體驗(yàn)。請(qǐng)?jiān)敿?xì)論述如何利用數(shù)據(jù)分析進(jìn)行運(yùn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論