2023-2024學年許昌市市級名校中考押題數(shù)學預測卷含解析_第1頁
2023-2024學年許昌市市級名校中考押題數(shù)學預測卷含解析_第2頁
2023-2024學年許昌市市級名校中考押題數(shù)學預測卷含解析_第3頁
2023-2024學年許昌市市級名校中考押題數(shù)學預測卷含解析_第4頁
2023-2024學年許昌市市級名校中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年許昌市市級名校中考押題數(shù)學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某校舉行“漢字聽寫比賽”,5個班級代表隊的正確答題數(shù)如圖.這5個正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,152.下列圖形中是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.3.如圖,點M為?ABCD的邊AB上一動點,過點M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點N.當點M從A→B勻速運動時,設點M的運動時間為t,△AMN的面積為S,能大致反映S與t函數(shù)關(guān)系的圖象是()A. B. C. D.4.分式方程的解為()A.x=-2 B.x=-3 C.x=2 D.x=35.下面調(diào)查方式中,合適的是()A.調(diào)查你所在班級同學的體重,采用抽樣調(diào)查方式B.調(diào)查烏金塘水庫的水質(zhì)情況,采用抽樣調(diào)査的方式C.調(diào)查《CBA聯(lián)賽》欄目在我市的收視率,采用普查的方式D.要了解全市初中學生的業(yè)余愛好,采用普查的方式6.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°7.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.8.如圖,菱形ABCD的對角線交于點O,AC=8cm,BD=6cm,則菱形的高為()A.cm B.cm C.cm D.cm9.如圖,將一張三角形紙片的一角折疊,使點落在處的處,折痕為.如果,,,那么下列式子中正確的是()A. B. C. D.10.將直線y=﹣x+a的圖象向右平移2個單位后經(jīng)過點A(3,3),則a的值為()A.4B.﹣4C.2D.﹣2二、填空題(共7小題,每小題3分,滿分21分)11.在直角坐標平面內(nèi)有一點A(3,4),點A與原點O的連線與x軸的正半軸夾角為α,那么角α的余弦值是_____.12.如圖,將矩形ABCD繞其右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖①位置,繼續(xù)繞右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖②位置,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路徑總長為_____.13.請寫出一個一次函數(shù)的解析式,滿足過點(1,0),且y隨x的增大而減小_____.14.請看楊輝三角(1),并觀察下列等式(2):根據(jù)前面各式的規(guī)律,則(a+b)6=.15.若a:b=1:3,b:c=2:5,則a:c=_____.16.如圖,已知,要使,還需添加一個條件,則可以添加的條件是.(只寫一個即可,不需要添加輔助線)17.如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的正弦值為__.三、解答題(共7小題,滿分69分)18.(10分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.19.(5分)如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標軸的交點,直線與“果圓”中的拋物線交于兩點(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點,連接,設與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點,使,如果存在,直接寫出點坐標,如果不存在,請說明理由20.(8分)如圖,∠BAO=90°,AB=8,動點P在射線AO上,以PA為半徑的半圓P交射線AO于另一點C,CD∥BP交半圓P于另一點D,BE∥AO交射線PD于點E,EF⊥AO于點F,連接BD,設AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長.(3)在點P的整個運動過程中.①當AF=3CF時,求出所有符合條件的m的值.②當tan∠DBE=時,直接寫出△CDP與△BDP面積比.21.(10分)如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F(xiàn),且DE=EF.求證:∠C=90°;當BC=3,sinA=時,求AF的長.22.(10分)計算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.23.(12分)如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.(1)求證:AE是⊙O的切線;(2)如果AB=4,AE=2,求⊙O的半徑.24.(14分)如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.若a=3,b=4,求DE的長;直接寫出:CD=(用含a,b的代數(shù)式表示);若b=3,tan∠DCE=,求a的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

將五個答題數(shù),從小打到排列,5個數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個答題數(shù)排序為:10,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.2、C【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解.詳解:A、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項正確;D、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤.故選:C.點睛:本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、C【解析】分析:本題需要分兩種情況來進行計算得出函數(shù)解析式,即當點N和點D重合之前以及點M和點B重合之前,根據(jù)題意得出函數(shù)解析式.詳解:假設當∠A=45°時,AD=2,AB=4,則MN=t,當0≤t≤2時,AM=MN=t,則S=,為二次函數(shù);當2≤t≤4時,S=t,為一次函數(shù),故選C.點睛:本題主要考查的就是函數(shù)圖像的實際應用問題,屬于中等難度題型.解答這個問題的關(guān)鍵就是得出函數(shù)關(guān)系式.4、B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,經(jīng)檢驗x=﹣3是分式方程的解.故選B.5、B【解析】

由普查得到的調(diào)查結(jié)果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似.【詳解】A、調(diào)查你所在班級同學的體重,采用普查,故A不符合題意;B、調(diào)查烏金塘水庫的水質(zhì)情況,無法普查,采用抽樣調(diào)査的方式,故B符合題意;C、調(diào)查《CBA聯(lián)賽》欄目在我市的收視率,調(diào)查范圍廣適合抽樣調(diào)查,故C不符合題意;D、要了解全市初中學生的業(yè)余愛好,調(diào)查范圍廣適合抽樣調(diào)查,故D不符合題意;故選B.【點睛】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進行普查、普查的意義或價值不大,應選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.6、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內(nèi)角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質(zhì)及三角形內(nèi)角和定理,解題的關(guān)鍵是先根據(jù)平行線的性質(zhì)求出∠C,再由CD=CE得出∠D=∠CED,由三角形內(nèi)角和定理求出∠D.7、A【解析】

∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故選A.8、B【解析】試題解析:∵菱形ABCD的對角線根據(jù)勾股定理,設菱形的高為h,則菱形的面積即解得即菱形的高為cm.故選B.9、A【解析】

分析:根據(jù)三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得結(jié)論.詳解:由折疊得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故選A.點睛:本題考查了三角形外角的性質(zhì),熟練掌握三角形的外角等于與它不相鄰的兩個內(nèi)角的和是關(guān)鍵.10、A【解析】

直接根據(jù)“左加右減”的原則求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【詳解】由“右加左減”的原則可知,將直線y=-x+b向右平移2個單位所得直線的解析式為:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故選A.【點睛】本題考查了一次函數(shù)圖象的平移,一次函數(shù)圖象的平移規(guī)律是:①y=kx+b向左平移m個單位,是y=k(x+m)+b,向右平移m個單位是y=k(x-m)+b,即左右平移時,自變量x左加右減;②y=kx+b向上平移n個單位,是y=kx+b+n,向下平移n個單位是y=kx+b-n,即上下平移時,b的值上加下減.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據(jù)勾股定理求出OA的長度,根據(jù)余弦等于鄰邊比斜邊求解即可.【詳解】∵點A坐標為(3,4),∴OA==5,∴cosα=,故答案為【點睛】本題主要考查銳角三角函數(shù)的概念,在直角三角形中,在直角三角形中,正弦等于對邊比斜邊;余弦等于鄰邊比斜邊;正切等于對邊比鄰邊,熟練掌握三角函數(shù)的概念是解題關(guān)鍵.12、【解析】分析:首先求得每一次轉(zhuǎn)動的路線的長,發(fā)現(xiàn)每4次循環(huán),找到規(guī)律然后計算即可.詳解:∵AB=4,BC=3,∴AC=BD=5,轉(zhuǎn)動一次A的路線長是:轉(zhuǎn)動第二次的路線長是:轉(zhuǎn)動第三次的路線長是:轉(zhuǎn)動第四次的路線長是:0,以此類推,每四次循環(huán),故頂點A轉(zhuǎn)動四次經(jīng)過的路線長為:∵2017÷4=504…1,∴頂點A轉(zhuǎn)動四次經(jīng)過的路線長為:故答案為點睛:考查旋轉(zhuǎn)的性質(zhì)和弧長公式,熟記弧長公式是解題的關(guān)鍵.13、y=﹣x+1【解析】

根據(jù)題意可以得到k的正負情況,然后寫出一個符合要求的解析式即可解答本題.【詳解】∵一次函數(shù)y隨x的增大而減小,∴k<0,∵一次函數(shù)的解析式,過點(1,0),∴滿足條件的一個函數(shù)解析式是y=-x+1,故答案為y=-x+1.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,寫出符合要求的函數(shù)解析式,這是一道開放性題目,答案不唯一,只要符合要去即可.14、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解析】

通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數(shù)按降冪排列,b的次數(shù)按升冪排列,各項系數(shù)分別為2、2、25、20、25、2、2.【詳解】通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數(shù)按降冪排列,b的次數(shù)按升冪排列,各項系數(shù)分別為2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.15、2∶1【解析】分析:已知a、b兩數(shù)的比為1:3,根據(jù)比的基本性質(zhì),a、b兩數(shù)的比1:3=(1×2):(3×2)=2:6;而b、c的比為:2:5=(2×3):(5×3)=6:1;,所以a、c兩數(shù)的比為2:1.詳解:a:b=1:3=(1×2):(3×2)=2:6;

b:c=2:5=(2×3):(5×3)=6:1;,

所以a:c=2:1;

故答案為2:1.點睛:本題主要考查比的基本性質(zhì)的實際應用,如果已知甲乙、乙丙兩數(shù)的比,那么可以根據(jù)比的基本性質(zhì)求出任意兩數(shù)的比.16、可添∠ABD=∠CBD或AD=CD.【解析】

由AB=BC結(jié)合圖形可知這兩個三角形有兩組邊對應相等,添加一組邊利用SSS證明全等,也可以添加一對夾角相等,利用SAS證明全等,據(jù)此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點睛】本題考查了三角形全等的判定,結(jié)合圖形與已知條件靈活應用全等三角形的判定方法是解題的關(guān)鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.17、【解析】

首先利用勾股定理計算出AB2,BC2,AC2,再根據(jù)勾股定理逆定理可證明∠BCA=90°,然后得到∠ABC的度數(shù),再利用特殊角的三角函數(shù)可得∠ABC的正弦值.【詳解】解:連接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值為.故答案為:.【點睛】此題主要考查了銳角三角函數(shù),以及勾股定理逆定理,關(guān)鍵是掌握特殊角的三角函數(shù).三、解答題(共7小題,滿分69分)18、【解析】試題分析:由矩形的對角線相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等邊三角形,從而得到OB=OA=2,則BD=4,最后在Rt△ABD中,由勾股定理可解得AD的長.試題解析:∵四邊形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等邊三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴AD===.19、(1);6;(2)有最小值;(3),.【解析】

(1)先求出點B,C坐標,利用待定系數(shù)法求出拋物線解析式,進而求出點A坐標,即可求出半圓的直徑,再構(gòu)造直角三角形求出點D的坐標即可求出BD;

(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個交點,求出直線EG解析式,即可求出CG,結(jié)論得證.

(3)求出線段AC,BC進而判斷出滿足條件的一個點P和點B重合,再利用拋物線的對稱性求出另一個點P.【詳解】解:(1)對于直線y=x-3,令x=0,

∴y=-3,

∴B(0,-3),

令y=0,

∴x-3=0,

∴x=4,

∴C(4,0),

∵拋物線y=x2+bx+c過B,C兩點,∴∴∴拋物線的解析式為y=;令y=0,

∴=0,∴x=4或x=-1,

∴A(-1,0),

∴AC=5,

如圖2,記半圓的圓心為O',連接O'D,

∴O'A=O'D=O'C=AC=,

∴OO'=OC-O'C=4-=,

在Rt△O'OD中,OD==2,∴D(0,2),

∴BD=2-(-3)=5;(2)如圖3,

∵A(-1,0),C(4,0),

∴AC=5,

過點E作EG∥BC交x軸于G,

∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設高為h,

∴S△ABF=AF?h,S△BEF=EF?h,∴==∵的最小值,∴最小,∵CF∥GE,∴∴最小,即:CG最大,∴EG和果圓的拋物線部分只有一個交點時,CG最大,

∵直線BC的解析式為y=x-3,

設直線EG的解析式為y=x+m①,

∵拋物線的解析式為y=x2-x-3②,

聯(lián)立①②化簡得,3x2-12x-12-4m=0,

∴△=144+4×3×(12+4m)=0,

∴m=-6,

∴直線EG的解析式為y=x-6,

令y=0,

∴x-6=0,

∴x=8,

∴CG=4,∴=;(3),.理由:如圖1,∵AC是半圓的直徑,

∴半圓上除點A,C外任意一點Q,都有∠AQC=90°,

∴點P只能在拋物線部分上,

∵B(0,-3),C(4,0),

∴BC=5,

∵AC=5,

∴AC=BC,

∴∠BAC=∠ABC,

當∠APC=∠CAB時,點P和點B重合,即:P(0,-3),

由拋物線的對稱性知,另一個點P的坐標為(3,-3),

即:使∠APC=∠CAB,點P坐標為(0,-3)或(3,-3).【點睛】本題是二次函數(shù)綜合題,考查待定系數(shù)法,圓的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),拋物線的對稱性,等腰三角形的判定和性質(zhì),判斷出CG最大時,兩三角形面積之比最小是解本題的關(guān)鍵.20、(1)詳見解析;(2)的長為1;(3)m的值為或;與面積比為或.【解析】

由知,再由知、,據(jù)此可得,證≌即可得;

易知四邊形ABEF是矩形,設,可得,證≌得,在中,由,列方程求解可得答案;

分點C在AF的左側(cè)和右側(cè)兩種情況求解:左側(cè)時由知、、,在中,由可得關(guān)于m的方程,解之可得;右側(cè)時,由知、、,利用勾股定理求解可得.作于點G,延長GD交BE于點H,由≌知,據(jù)此可得,再分點D在矩形內(nèi)部和外部的情況求解可得.【詳解】如圖1,,,,、,,,≌,.,,,,,四邊形ABEF是矩形,設,則,,,,,≌,,≌,,在中,,即,解得:,的長為1.如圖1,當點C在AF的左側(cè)時,,則,,,,在中,由可得,解得:負值舍去;如圖2,當點C在AF的右側(cè)時,,,,,,在中,由可得,解得:負值舍去;綜上,m的值為或;如圖3,過點D作于點G,延長GD交BE于點H,≌,,又,且,,當點D在矩形ABEF的內(nèi)部時,由可設、,則,,則;如圖4,當點D在矩形ABEF的外部時,由可設、,則,,則,綜上,與面積比為或.【點睛】本題考查了四邊形的綜合問題,解題的關(guān)鍵是掌握矩形的判定與性質(zhì)、全等三角形的判定和性質(zhì)及勾股定理、三角形的面積等知識點.21、(1)見解析(2)【解析】

(1)連接OE,BE,因為DE=EF,所以=,從而易證∠OEB=∠DBE,所以OE∥BC,從可證明BC⊥AC;(2)設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=從而可求出r的值.【詳解】解:(1)連接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O與邊AC相切于點E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論