




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
ofAgentic
Supervision
TheFuture
ΛRFΛCT
AIISABOUTPEOPLE
WEACCELERATEDATAANDAIADOPTIONTOPOSITIVELYIMPACT
PEOPLEANDORGANIZATIONS.
25
COUNTRIES
1700
EMPLOYEES
+1000
CLIENTS
Artefactisagloballeaderinconsultingservices,specializedindatatransformation
anddata&digitalmarketing,fromstrategytothedeploymentofAIsolutions.
Weareofferingauniquecombinationofinnovation(Art)anddatascience(Fact).
STRATEGY&TRANSFORMATION|AIACCELERATION|DATAFOUNDATIONS&BI
IT&DATAPLATFORMS|MARKETINGDATA&DIGITAL
Executivesummary
LastFebruary,wepublished“TheFutureofWorkwithAI”,ourfirststudyonAgenticAI.WefoundthatalthoughAIagentswillreplacehumansontediousandrepetitivetasks,anewtypeofworkwillappear:AgenticSupervision.Duringtheindustrialrevolution,machinesreplacedhumansonmanualtasks,butnewjobsappearedsuchasmachinepurchasing,operationalsupervisionandmaintenance.WithAgenticAI,cognitivejobswillbereplacedbyotherhigher-levelandmoreproductivecognitivejobs.ThisstudyintendstodeepdiveintotheearlydaysofAgenticSupervisionandtodrawtheoutlineoftheFutureofSupervisionintermsofAgentlifecyclemanagement,governanceandsupervisiontooling.
TogatherthecurrentstateofAgenticSupervision,wein-terviewed14enterprisesand5ArtefactAgenticProductManagers&Engineers.WealsocontactedkeyAgenticSupervisionproviders,includingmajorData&AIplatformswithyearsofsoftwaresupervisionexperience(suchasGoogleandMicrosoft)aswellasspecializedstart-ups(WB,Giskard,RobustIntelligence…).
ThefirstinsightwefoundisthatwhileAgenticSupervisionextendstheprinciplesestablishedinDevOps(softwareop-erations),DataOps(dataoperations),andMLOps(MachineLearningoperations),itdramaticallyincreasesthedemandforrobustgovernancetokeepAIAgentsalignedandundercontrol.Indeed,with“softwarethatstartstothink”,unseenrisksareemerging,suchashallucination,reasoningerrors,inappropriatetone,intellectualpropertyinfringementorevenpromptjacking.Mitigatingthesereliability,behavioral,regulatoryandsecurityrisksnowrequiresgovernancethatisnotonlymorerigorousbutalsobroaderthanwhathaspreviouslybeenappliedtotechproducts.
Thismarkedlygreaterneedforgovernanceisthechal-lengethatmaydefinetheemergingoperationalparadigmof“AgentOps”.Interestingly,AgentOpswillneedtobuilduponeachorganization’sexistingDevOps,DataOps,andMLOpsfoundationsandgovernance,andcompanieslag-
RFΛCT
THEFUTUREOFAGENTICSUPERVISION
“WefoundthatalthoughAIagentswillreplacehumansontediousandrepetitivetasks,anewtypeofworkwillappear:
AgenticSupervision.”
gingintheseoperationaldomainswillhavetobridgeanygapsintheseareaswhilesettingtheirAgenticgovernanceframework.
Thesecondmajorchallengeidentifiedbyourinterview-eesistheneedtostrengthentheirAIsupervisiontooling.ManyarecurrentlyrelyingonexistingRPAandDev/Data/MLOpstools,orexperimentingwithcustom-builtsolutionsastheysearchformoresustainable,long-termoptions.Theabundanceofearly-stagetoolsandtheneedtoenvisionacohesive,end-to-endsupervisionsystemthatintegratesmultiplecomponents,promptedustoexplorethetechno-logicaldimensionsofagenticsupervisioningreaterdepth.AswithanyTechOpsframework,AgentOpssupervisioninvolvesthreefundamentalstages:(1)Observe,(2)Evaluate,and(3)Monitorandmanageincidents.Whilethethirdstagerepresentsthelargestsupervisioneffortandtime,thefirsttwoareessentialtoensuringeffectiveriskmanagement.Withnewcategoriesofriskstomonitorandconsequently,newlogs,traces,andevaluationmechanismstoestablish,it’sclearwhyintervieweesconsistentlyemphasizedtheneedfortherighttoolstosupportscalableandreliablesupervision.
3
EXECUTIVESUMMARYTHEFUTUREOFAGENTICSUPERVISION
“Supervisionshouldnotbeanafterthought,itmustbe
embeddedearlyintheagent’sdesignanddevelopment.”
Ourresearchintoagenticsupervisiontoolsrevealedthreekeyinsights.First,thereiscurrentlynoall-in-onesolutionavailable.MajorcloudproviderslikeGoogleandMicrosoftareactivelydevelopingandreleasingsupervisiontoolsandframeworksaimedatcoveringthefullspectrumofsupervisionneedsforteamsbuildingagentsonplatformssuchasVertexAI(Google)andCopilotStudio(Microsoft).Second,agentsupervisionfallsintotwocategories:pro-activeandreactive.Proactivesupervisionisappliedduringdevelopmenttotestagentsagainstdefinedscenariosor,inproduction,tocontinuouslyguardagainstemergingthreats,particularlyintheareaofsecurity,ortocollectaggregatedperformancedata.Itsgoalistoimproveagentbehaviorovertime.Reactivesupervision,ontheotherhand,focusesondetectingandhandlingliveincidents.Althoughbothtypesrelyonobservabilitytoolsandmayusesimilarevaluationmechanisms,theydiffersignificantlyindatasources,eval-uationgranularity,andresponsestrategies.Finally,ourthirdinsightisthatagenticobservability,evaluation,andriskmitigationremaincomplexandrapidlyevolvingdomains.Weanticipatesubstantialadvancementsinsupervisiontoolingoverthecomingyears.
Eachphaseoftheagenticsupervisioncycle;observe,evaluate,andsupervise,presentsitsownsetofchal-lenges.
Observabilityfirstrequiresanticipatingwhatdatatocapture,whichdependsheavilyonhavingaclearlydefinedevaluationandsupervisionstrategy.Withoutthisforesight,teamsriskeithercollectingtoolittleinformationorbeingoverwhelmedbyvast,unstructuredtracesthathindermanualrootcause
analysis.ToolslikeLangSmithandLangChainareincreas-inglyusedtostructureandstreamlinetheobservationofagentbehavior.AnothermajorchallengeliesintheopacityofLLMreasoning,whichmustbecounteredbydeliberatelydesigningagentarchitecturesandworkflowstoensuretraceabilityandtransparency.
EvaluationinagenticAIissignificantlymorecomplexthanintraditionalsoftwareordataqualityassessments.Wheredeterministictestsbasedonobservabilityqueriesaresuf-ficientinclassicalDevOpsandDataOps,agenticsystemsoftenrequireAItoevaluateAI.ThishasledtotheriseofLLM-as-a-judgetechniques;acounterintuitiveapproachwhereonemodelassessestheoutputofanother.Whilethisraisesconcerns(whytrustflawedAItojudgeflawedAI?),studiesshowitoftenproducesmoreconsistentandscalableresultsthanhumanreviewers.Nonetheless,acommonpainpointamongintervieweeswasthedifficultyofbuildingreliablegroundtruthdatasets,expert-curatedquestion-answerpairs,tobenchmarkagentresponses.Humanevaluatorstendtodisagreeandoftenlackcom-pletenessintheiranswers.
Finally,supervisionandmitigationfacechallengesaroundprioritization.Withagrowingnumberofmetricsandalerts,teamscanquicklybecomeoverwhelmed.Standardizedframeworksforalertingandmetricmanagementareamusttobringstructureandclaritytoagenticsupervision.
Onlyahandfuloforganizationshavesuccessfullyestab-lishedeffectivegovernanceandstandardsforagenticAI.Thosewithmaturesoftwareanddatagovernanceframe-
4ΛRFCT
EXECUTIVESUMMARY
“AgenticSupervisionis
theFutureofWorkwithAI!”
workshavehadaheadstart,benefitingfromstrongfoun-dationsandawell-establishedcultureofobservabilityandsupervision.Weobservedthatleveragingexistingsoftware,RPA,anddatasupervisionpractices,processes,andtoolscansignificantlyaccelerateprogress.However,thekeychal-lengeliesinadaptingthesetothedynamicrisksandevolvingtoolsetsspecifictoagenticAI,andinbuildingadedicated,future-readygovernanceframework.Relyingtoolongonlegacyapproaches,includingdeterministiclogicandcus-tom-builttools,canbecomeaconstraint,limitingteamstonarrow,tightlycontrolledagenticworkflowsandpreventingtheadoptionofmoreautonomous,AI-orchestratedagents.
Allintervieweesemphasizedthatthekeytoeffectiveagenticsupervisionisanticipation.Supervisionshouldnotbeanaf-terthought,itmustbeembeddedearlyintheagent’sdesignanddevelopment.Settingupobservabilityandevaluationmechanismsonlyoncetheagentisinproductionistoolate.Identifyingflawsatthatstageoftenmeansreworkingtheentireagent,whichisfarmorecostlythaninvestinginrobustsupervisionfromthestart.
Thegoodnewsisthatavarietyoftestedtoolcombinationsandemergingagenticframeworksarealreadyavailable.WestronglyrecommendthatenterpriseAIgovernanceteamsdefinetheirownstandardizedframeworkandtoolsettobeappliedacrossallagenticdevelopment.Thisbecomesevenmorecriticalasagentsbegintointerconnect,makingsys-tem-widecontrolandsupervisioninteroperabilityessential.
Tosucceed,AIgovernancemustalsoaligncloselywithstrongITandDataGovernancepractices,sinceagents
RFΛCT
THEFUTUREOFAGENTICSUPERVISION
relyonenterprisedataandITsystemsto‘think’andtake‘a(chǎn)ction.’JustasITanddatagovernancerequiredbusinessinvolvementinthepast,oneofthekeytakeawaysfromourstudyisthatagenticgovernancewilldemandevendeeperbusinessengagement.
Unliketraditionalsoftwareordatasupervision,typicallyhandledbyITordatateams(andinthemostmatureor-ganizations,byabusiness-leddatagovernancenetwork),agentsupervisionwillneedtobebusiness-owned.GiventheinherentunpredictabilityofAIagents,incidentresponsesof-tenrequiredomainexpertise.Asaresult,thebusinessmustbeactivelyinvolvednotjustinmonitoring,butinframingagentbehaviorfromtheoutset.Thisrepresentsasignificantculturalshift:agenticAIblursthelinesbetweenIT,data,andbusiness,andwillrequirenewwaysofworkingbasedoncross-functionalcollaboration.AgenticSupervisionistheFutureofWorkwithAI!
FlorenceBénézit
ExpertPartnerData&AIGovernance
HananOuazan
ManagingPartner,LeadGenerativeAI
5
THANKS&ACKNOWLEDGMENTSTHEFUTUREOFAGENTICSUPERVISION
Methodology
ThisstudyisbasedonaqualitativeresearchapproachdesignedtoexploretheemergingchallengesandgovernancepracticessurroundingtheearlyimplementationsofautonomousAIagentsinorganizations.Bycombiningexpertinterviewswithanin-depthanalysisoftheevolvingtechnologicallandscape,weaimedtomapcurrentpractices,identifyoperationalneeds,andunderstandthevaluepropositionsofavailablesolutionsforagentobservability,evaluation,andsupervision.
Weconducted20+interviewswithprofessionalsdirectlyinvolvedinthedeployment,governance,ortechnicaldevelopmentofagenticsystems.Theseincluded:
—AIandDataLeaders,suchasChiefDataOfficers,HeadsofAI,andDataPlatformDirectors,whosharedtheirstrategicvisiononagentimplementation,riskmanagement,andtheevolutionofdatainfrastructure.
—ProductManagersandInnovationExecutiveswhoofferedinsightsintooperationalusecases,organizationalreadiness,andtheshifttowardagent-centricarchitectures.
—Compliance,Security,andITGovernanceExperts,
whoprovidedcriticalinputonregulatoryexpectations,ethicalrisks,andtheemergingneedforreal-timecontrolmechanismstailoredtoAIagents.
—FoundersandChiefsofScienceofAItoolingcompanies,
whosefeedbackhelpedassessthestateofthemarketacrossthreekeyfunctions:observability,evaluation,andactivesupervisionofAIagents.
Intervieweesrepresentedadiverserangeoforganizations,includingmajorcorporations(insectorssuchasenergy,telecom,pharmaceuticals,andluxury),globaltechplayers,andhigh-growthstartups,ensuringarichandnuancedunderstandingofthetopic.
Inparallel,weconductedasystematicreviewofoveradozentoolsandplatformsofferingcapabilitiesrelevanttoagentgovernanceincludingLangfuse,LangSmith,DeepEval,CopilotStudio,VertexAI,Ragas,Weights&Biases,PRISMEval,DeepEval,RobustIntelligence,Giskard…Eachsolutionwasanalyzedusingadedicatedframeworkthatcross-referencedthreedimensionsofquality(Reliability,BehavioralAlignment,Security)withthreestagesofsupervision(Observation,Evaluation,ActiveSupervision).
Byintegratingreal-worldpractitionerfeedbackwithastructuredtechnologicalbenchmark,thisstudyaimstoofferapragmaticandforward-lookingperspectiveonhowcompaniescanresponsiblyscaleagenticAIsystems.
SpecialThanks&Acknowledgments
ENTERPRISEINTERVIEWEES
YoannBersihand,VPAITechnology,SCHNEIDER
ArthurGarnier,ITChiefofStaff&DataScientist,ARDIANJean-Fran?oisGuilmard,CDO,ACCOR
PaulSaffers,DeputyCDO,VEOLIA
AlexisVaillant,HeadAutomatisation,ORANGE
LeoWang,DataProtectionOfficer,LOUISVUITTONCHINA
AGENTOPSSTACKINTERVIEWEES
AlexCombessie,Co-founder&Co-CEO,GISKARD
SaloméFroment,AccountDirectorFrance,WEIGHTS&BIASESéricHoresnyi,HeadofAIGo-To-Market,GOOGLEFRANCE
AminKarbasi,SeniorDirector,CISCOFOUNDATIONAIRESEARCH(FormerChiefScientistatRobustIntelligence)
Jean-LucLaurent,GenerativeAI/MLSpecialist,GOOGLE
PierrePeigné,Co-founderandChiefScienceOfficer,PRISMEvalChrisVanPelt,Co-founder&CISO,WEIGHTS&BIASES
MarcGardette,DeputyCTO,MICROSOFTFRANCE
6ΛRFCT
TABLEOFCONTENTSTHEFUTUREOFAGENTICSUPERVISION
8
Introduction
9I—AgenticAIrisksareshakingupthetech
governance&supervisiongame.
10AgenticAIorwhensoftwarestartstothink.
14Newtech,oldproblems:whygovernanceisacontinuum.
18Nomorewatchingfromthesidelines:AgenticAIputssupervisioninbusinesshands.
24II—ThenewAgentOpsstack:tests,guardrailsandfeedbackloops.
25Pre-productiontestingmustembracevariabilitytoensureagentreadiness.
35Guardrailsprotectoperationsbymanagingrisksduringagentexecution.
41Agentsupervisionspansfromimmediateruntimeactionstofutureplanningdecisions.
45III—SecureandaccelerateAgenticAIwith
standards&globalgovernance.
46Technicalteamsneedclearstandardstobuildanddeployagentsefficientlyandresponsibly.
50Scalingmulti-agentsystemsrequiressharedprotocolsforinteroperabilityandmanageability.
55BusinessteamsneedtoorganizeglobalAIgovernanceandsupervisionprotocols.
58
Conclusion
RFΛCT7
INTRODUCTIONTHEFUTUREOFAGENTICSUPERVISION
Introduction
If,asshowninourpreviousstudy,thefutureofworkwithAIliesinsupervisingAIagents,thenitisessentialtoensurethatthisnewformofworkbecomesabetterexperiencethanthecognitivetasksitreplaces.Manu-allyoverseeingeverystepanddecisionmadebyanagentwouldquicklybecomeatedious,evenmoredrainingtaskthansolvingtheproblemdirectlyourselves.So,howcanwedobetter?Thisstudyexploreswhat’strulyatstakeinagenticsupervisionandhowearlytoolsarebeginningtoshapewhatthisnewtypeofworkmightlooklike.
Wetakeabroadviewofwhatsupervisionmeans.Itstartswithsettingupautomatedloggingandtracingsystems.Italsoinvolvesdesigningevaluationandalert-ingframeworksthatguidethefinalandmostvisiblestep:takingaction(manuallycorrectingmistakes,relaunchinganagentictaskwithbettercontext,mitigatingincidents,identifyingareasforimprovement,andprioritizingde-velopmentefforts).Supervisingagentsmirrorsmanyaspectsofhumancollaboration:definingjobdescriptions(agentobjectives),recruiting(designinganddeployingnewagents),trainingandcoaching(monitoringandup-
datingbehavior),andongoingcollaboration(providingin-putsandsupporttoagents,butalsolearningfromagentsandthebusinesscontexttheycollectintheirmemory).
Webelievethatthesupervisionofasingleagentwillnotfalltojustoneperson.Agenticsupervisionisinherentlymultidimensional.Forinstance,businessoperationsmayoverseerelevanceandaccuracy;ethicsteams,compli-anceandtone;businessleaders,valueandeconomicviability;andcybersecurityteams,safetyandmaliciousattackriskmitigation.
Thisstudyfocusesonbestpracticesforagenticgov-ernance,supervisionprocesses,andthesupportingtools.Whilethisdomainisstillemergingandlikelytoevolvesignificantly,wealsoobservestrongcontinuitywithestablishedpracticesfromsoftware,RPA,data,andMLsupervision.DespitetheuniquechallengesposedbytheprobabilisticbehaviorofAIagents,manystablefoundationsalreadyexist.Embracingthesefoundationsnowiscriticaltoensuringthesuccessofearlyagenticinitiatives.
GeneratedwithChatGPT
8RFCT
THEFUTUREOFAGENTICSUPERVISION
I
AgenticAIrisksareshakingupthetechgovernance&
supervisiongame.
10
I.A
—AgenticAIorWhenSoftwareStartstoThink.
14I.B—NewTech,OldProblems:WhyGovernanceIsaContinuum.
18I.C—Nomorewatchingfromthesidelines:AgenticAIputssupervisioninbusinesshands.
9
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
I.AAgenticAIorWhenSoftwareStartstoThink.
AIagentsradicallydifferfromsoftware:theyareautonomousandgoal-driven.
Traditionalsoftwarefollowspredeterminedlogic,andchat-botsoperatewithinrigidtemplatesanddeterministicdeci-siontrees.Incontrast,agenticAIsystemsgomuchfurther:theyinterpretcontext,planactions,andexecutetasksbychainingdecisionsacrossvarioustoolsandAPIs.Theseagentsdon’tsimplywaitforusercommands,theypursueobjectives,evaluateintermediateoutcomes,andadjusttheirstrategiesonthefly.Thisautonomousreasoningmakesthemfeellessliketoolsandmorelikecollaborators.UnlikeRPAbots(RoboticProcessAutomation)orevenstandalonelargelanguagemodels(LLMs),agenticAIsys-temsaregoal-orientedandtask-complete,builttoachieveanoutcome,notjustfollowinstructionsorgeneratethemostlikelynextresponsetoaprompt.
Thismarksafundamentalshiftinthesoftwaredevelop-mentparadigm.Insteadofhardcodinglogicupfront,youdefinegoalsandsetconstraintsandtheagentautono-mouslyconstructsitsownplan.Itmaychainprompts,callAPIs,search&querydatastores,orevencreatesubgoalsasneeded.Ratherthanfollowingafixedpath,thesystemcontinuouslyadaptsitsactionstowhat’smostlikelyto
succeed.Whilethisopensthedoortomajorproductiv-itygains,italsodisruptstraditionalgovernancemodels:Howdoyoutestasystemwhoseoutputschangewitheveryrun?Howcanyoucontrolbehaviorthatvariesovertime,withoutresortingtoconstanthumanoversightandintervention?
“What’sdifferentwithagentsisthattheydon’tjustfollowascript.Theyinterpretinstructions,decidehowtoachievegoals,andofteninfermorethanyoutoldthemto.Thatopensupanewlayerofunpredictability.You’renotsuper-visingcode,you’resupervisingintent.”
ArthurGRENIER
ITChiefofStaff&SeniorDataScientist
ARDIAN
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
AgenticAIcan’tbemade100%predictableandcallsforgovernancereinventiontobalancevalueandrisks.
Thefirstgenerationofautomationtools,includingRPA,macrosandrule-basedbots,offeredpredictabilitybyde-sign.Theymimickeduseractionsstepbystep,withinwell-definedworkflows.EventraditionalMachineLearningsystems,despitetheirinternalcomplexityandprobabilisticnature,operatedwithinclearboundaries:structuredinputsandoutputs.Incontrast,LLMsacceptunstructuredtextinputsandcangenerateawiderangeofoutputs,ofteninunpredictableformats.AgenticAIexacerbatesbehaviorcomplexityevenfurther,agentsnavigatedynamicenviron-ments,drawonmultipleknowledgesources,andadapttheiractionsautonomouslyinrealtime.Theirbehaviorisinfluencednotjustbytrainingdataorpredefinedrules,butbyhumanprompts,toolusage,memorystate,andimplicitknowledgebakedintotheirfoundationmodels.
Legacygovernancemodelsreliedondeterministicin-put-outputcontrol:supplytestdata,verifyresults,tracebugs.Butagenticsystemsblurthatline.Asinglepromptmightleadtohallucinations,multipleAPIcalls,toolinterac-tions,ormemoryrecalls,allpotentiallydifferenteachtime.Thisabstractionbetweenintentandexecutioncreatesagovernancecontrolgapintermsoftechnicalvisibility,pro-cessreadinessandaccountability:rulescanbebypassed,edgecasesoverlooked,andbehavioralregressionsmaygounnoticeduntiltheycauserealissues.
Asaresult,supervisingagentsshiftstheeffortweightfromverifyingcodetoobservingpairsofinputsandoutputs,andpiecingtogethertheirdecision-makingret-rospectively.Asforsoftwareanddatamanagement,thisobservation&analysisefforthappensbothoffline,beforedeploymentongroundtruthorsyntheticdata,andonlineonproductiondata.Allintervieweesstressedtheimportanceofsettingupagenticsupervisionupfronttorigorouslytestagentswhilebeingdevelopedbutalsotoanticipateonlinesupervisionaccountabilityandreme-diationprocesses.
“Unliketraditionalsoftware,AIdevelopmentisfundamentallyprobabilistic.CodeisnolongerthecoreIP,learningis.Whatmattersisknow-ingwhatworks,whatdoesn’t,andwhy.”
ChrisVanPelt
Co-founder&CISO
10ΛRFCTRFΛCT11
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
Thisunpredictabilityshiftintroducestheneedforlarge-scale,statisticalvalue&riskevaluation.
Asaconsequenceofthisunpredictability,theemergenceofagenticAIhasintroducedaprofoundcontrolchallenge:traditionalQA(QualityAssessment)methodsarenolongeradequate.Previously,ahandfulofunittestsmatchingfixedinputstotheirexpecteddeterministicoutputswasenoughtovalidatehardcodedlogic.Incontrast,AIagentsnowrequiretestingacrossabroadspectrumofpossibleinputs,witheachtestscenariorigorouslyandrepeatedlyruntoaccountfortheirnon-deterministicbehavior.Ontopofthat,evaluatingtheirperformancemeansinterpretingun-structuredandvariabletextoutputs,whichmakesitmuchhardertoconsistentlydefineandmeasurewhat“quality”reallymeans.Outputqualitymayneedtobeassessedalongmultipledimensions,includingfactualaccuracy,completeness,security,andalignmentwithuserintent.
Oncequalityisassessed,asecondchallengeemerges:identifyingtherootcausesofagentfailurestosupportim-provementormanagerunincidents.Thisrequiresdetailed,transparentloggingoftheagent’sreasoningprocess,accessibletoadiversesetofsupervisingstakeholders;developers,complianceofficers,businessowners,anddomainexpertsalike.
“Theneedtoclosethissupervisionandgovernancegaprisesveryearlyintheenterpriseagenticjourney.”
Theneedtoclosethissupervisionandgovernancegaprisesveryearlyintheenterpriseagenticjourney.Asagenticsystemsbegininterpretingcomplexbusinesscontextsandtakingautonomousdecisions,therisksandresponsibilitiesgrow.Whileagentsarealreadybeingdeployedinenterprisepilotsacrossvariousfunctions,thetechnical,organization-al,andlegalinfrastructuresrequiredforrobustsupervisionremainunderdeveloped.Legacygovernanceframeworksareinsufficientandenterprisesneedtoupgradeitwithanew,test-intense,purpose-builtapproach.
“AftertheDigitalandMobilerevolutions,wearenowenteringathirdwaveofmediadisrup-tion:AIagents.Theseagentswillincreasinglymediateourinteractionswithcompanies,
transforminghowwesearch,learn,shop,
work,andcommunicate.Imaginethatin2030,40%ofinteractionsbetweenconsumersandcompanieswillbeshapedbyAI.Buthowdowecontrolthereliabilityandsecurityrisksoftheseagents?”
AlexCOMBESSIE
Co-founder&Co-CEO
}PGiskard
12ΛRFCT
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
TECHNOLOGY
Giskardisanopen-sourcetestingplatformdesignedtoensurethequality,security,andcomplianceofAImodels.Itautomatesthedetectionofvulnerabilitiessuchashallucinations,biases,andsecurityflawsinLLMsandagents.Giskard’sfeaturesincludeautomatedtestgeneration,continuousmonitoring,andcollaborativetoolsthatfacilitatecross-functionalteamworkamongdatascientists,developers,andbusinessstakeholders.
FEATURECOVERAGE
Eliability,Regulatorycompliance,Security,FinOps,Latency
OBSERVE.
Giskarddoesnotofferreal-timeob-servabilityfeaturessuchastrackinglatency,tokenusage,orcostmet-rics.Itsprimaryfocusisonpre-de-ploymenttestingandvulnera
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北女子職業(yè)技術學院《全球通史》2023-2024學年第二學期期末試卷
- 數(shù)據(jù)融合招標方案(3篇)
- 員工工作方案(3篇)
- 廢石場整改方案(3篇)
- 管家管理別墅方案(3篇)
- 道法日益完善的法律體系 課件-2024-2025學年統(tǒng)編版道德與法治七年級下冊
- 店鋪房頂改造方案(3篇)
- 生日會班會課件
- 蛋雞設施建設方案(3篇)
- 水廠應急方案(3篇)
- 公司職工提案登記表
- 機關食堂食材招標的請示范本
- 聲波檢測報告
- 2023年國考真題(附答案)
- 個案工作知識點隋玉杰主編
- 乙狀結腸癌護理查房
- 2022年高考真題及答案解析《歷史、地理、政治》(廣東卷)
- 朗文4B 復習提要及朗文4B單詞及句子
- TSGD0012023年壓力管道安全技術監(jiān)察規(guī)程-工業(yè)管道(高清晰版)
- 運動控制系統(tǒng)阮毅陳維鈞課后答案清華大學出版社
- 光伏電站項目工程資料清單
評論
0/150
提交評論