




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁西安交通大學(xué)城市學(xué)院
《機(jī)器學(xué)習(xí)與人工智能導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行機(jī)器學(xué)習(xí)模型評(píng)估時(shí),除了準(zhǔn)確性等常見指標(biāo)外,還可以使用混淆矩陣來更詳細(xì)地分析模型的性能。對(duì)于一個(gè)二分類問題,混淆矩陣包含了真陽性(TP)、真陰性(TN)、假陽性(FP)和假陰性(FN)等信息。以下哪個(gè)指標(biāo)可以通過混淆矩陣計(jì)算得到,并且對(duì)于不平衡數(shù)據(jù)集的評(píng)估較為有效?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)2、當(dāng)使用樸素貝葉斯算法進(jìn)行分類時(shí),假設(shè)特征之間相互獨(dú)立。但在實(shí)際數(shù)據(jù)中,如果特征之間存在一定的相關(guān)性,這會(huì)對(duì)算法的性能產(chǎn)生怎樣的影響()A.提高分類準(zhǔn)確性B.降低分類準(zhǔn)確性C.對(duì)性能沒有影響D.可能提高也可能降低準(zhǔn)確性,取決于數(shù)據(jù)3、在構(gòu)建一個(gè)用于圖像識(shí)別的卷積神經(jīng)網(wǎng)絡(luò)(CNN)時(shí),需要考慮許多因素。假設(shè)我們正在設(shè)計(jì)一個(gè)用于識(shí)別手寫數(shù)字的CNN模型。以下關(guān)于CNN設(shè)計(jì)的描述,哪一項(xiàng)是不正確的?()A.增加卷積層的數(shù)量可以提取更復(fù)雜的圖像特征,提高識(shí)別準(zhǔn)確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計(jì)算復(fù)雜度,同時(shí)保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強(qiáng)模型的表達(dá)能力4、在進(jìn)行時(shí)間序列預(yù)測時(shí),有多種方法可供選擇。假設(shè)我們要預(yù)測股票價(jià)格的走勢。以下關(guān)于時(shí)間序列預(yù)測方法的描述,哪一項(xiàng)是不正確的?()A.自回歸移動(dòng)平均(ARMA)模型假設(shè)時(shí)間序列是線性的,通過對(duì)歷史數(shù)據(jù)的加權(quán)平均和殘差來進(jìn)行預(yù)測B.差分整合移動(dòng)平均自回歸(ARIMA)模型可以處理非平穩(wěn)的時(shí)間序列,通過差分操作將其轉(zhuǎn)化為平穩(wěn)序列C.長短期記憶網(wǎng)絡(luò)(LSTM)能夠捕捉時(shí)間序列中的長期依賴關(guān)系,適用于復(fù)雜的時(shí)間序列預(yù)測任務(wù)D.所有的時(shí)間序列預(yù)測方法都能準(zhǔn)確地預(yù)測未來的股票價(jià)格,不受市場不確定性和突發(fā)事件的影響5、在構(gòu)建機(jī)器學(xué)習(xí)模型時(shí),選擇合適的正則化方法可以防止過擬合。假設(shè)我們正在訓(xùn)練一個(gè)邏輯回歸模型。以下關(guān)于正則化的描述,哪一項(xiàng)是錯(cuò)誤的?()A.L1正則化會(huì)使部分模型參數(shù)變?yōu)?,從而實(shí)現(xiàn)特征選擇B.L2正則化通過對(duì)模型參數(shù)的平方和進(jìn)行懲罰,使參數(shù)值變小C.正則化參數(shù)越大,對(duì)模型的約束越強(qiáng),可能導(dǎo)致模型欠擬合D.同時(shí)使用L1和L2正則化(ElasticNet)總是比單獨(dú)使用L1或L2正則化效果好6、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于預(yù)測股票價(jià)格的機(jī)器學(xué)習(xí)模型,需要考慮市場的動(dòng)態(tài)性和不確定性。以下哪種模型可能更適合處理這種復(fù)雜的時(shí)間序列數(shù)據(jù)?()A.長短時(shí)記憶網(wǎng)絡(luò)(LSTM)結(jié)合注意力機(jī)制B.門控循環(huán)單元(GRU)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)的組合C.隨機(jī)森林與自回歸移動(dòng)平均模型(ARMA)的融合D.以上模型都有可能7、在一個(gè)金融風(fēng)險(xiǎn)預(yù)測的項(xiàng)目中,需要根據(jù)客戶的信用記錄、收入水平、負(fù)債情況等多種因素來預(yù)測其違約的可能性。同時(shí),要求模型能夠適應(yīng)不斷變化的市場環(huán)境和新的數(shù)據(jù)特征。以下哪種模型架構(gòu)和訓(xùn)練策略可能是最恰當(dāng)?shù)模浚ǎ〢.構(gòu)建一個(gè)線性回歸模型,簡單直觀,易于解釋和更新,但可能無法處理復(fù)雜的非線性關(guān)系B.選擇邏輯回歸模型,結(jié)合正則化技術(shù)防止過擬合,能夠處理二分類問題,但對(duì)于多因素的復(fù)雜關(guān)系表達(dá)能力有限C.建立多層感知機(jī)神經(jīng)網(wǎng)絡(luò),通過調(diào)整隱藏層的數(shù)量和節(jié)點(diǎn)數(shù)來捕捉復(fù)雜關(guān)系,但訓(xùn)練難度較大,容易過擬合D.采用基于隨機(jī)森林的集成學(xué)習(xí)方法,結(jié)合特征選擇和超參數(shù)調(diào)優(yōu),能夠處理多因素和非線性關(guān)系,且具有較好的穩(wěn)定性和泛化能力8、在一個(gè)無監(jiān)督學(xué)習(xí)問題中,需要發(fā)現(xiàn)數(shù)據(jù)中的潛在結(jié)構(gòu)。如果數(shù)據(jù)具有層次結(jié)構(gòu),以下哪種方法可能比較適合?()A.自組織映射(SOM)B.生成對(duì)抗網(wǎng)絡(luò)(GAN)C.層次聚類D.以上方法都可以9、假設(shè)正在構(gòu)建一個(gè)語音識(shí)別系統(tǒng),需要對(duì)輸入的語音信號(hào)進(jìn)行預(yù)處理和特征提取。語音信號(hào)具有時(shí)變、非平穩(wěn)等特點(diǎn),在預(yù)處理階段,以下哪種操作通常不是必需的?()A.去除背景噪聲B.對(duì)語音信號(hào)進(jìn)行分幀和加窗C.將語音信號(hào)轉(zhuǎn)換為頻域表示D.對(duì)語音信號(hào)進(jìn)行壓縮編碼,減少數(shù)據(jù)量10、假設(shè)正在進(jìn)行一個(gè)情感分析任務(wù),使用深度學(xué)習(xí)模型。以下哪種神經(jīng)網(wǎng)絡(luò)架構(gòu)常用于情感分析?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.長短時(shí)記憶網(wǎng)絡(luò)(LSTM)D.以上都可以11、在一個(gè)分類問題中,如果類別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機(jī)B.決策樹C.樸素貝葉斯D.隨機(jī)森林12、在一個(gè)信用評(píng)估的問題中,需要根據(jù)個(gè)人的信用記錄、收入、債務(wù)等信息評(píng)估其信用風(fēng)險(xiǎn)。以下哪種模型評(píng)估指標(biāo)可能是最重要的?()A.準(zhǔn)確率(Accuracy),衡量正確分類的比例,但在不平衡數(shù)據(jù)集中可能不準(zhǔn)確B.召回率(Recall),關(guān)注正例的識(shí)別能力,但可能導(dǎo)致誤判增加C.F1分?jǐn)?shù),綜合考慮準(zhǔn)確率和召回率,但對(duì)不同類別的權(quán)重相同D.受試者工作特征曲線下面積(AUC-ROC),能夠評(píng)估模型在不同閾值下的性能,對(duì)不平衡數(shù)據(jù)較穩(wěn)健13、在一個(gè)強(qiáng)化學(xué)習(xí)問題中,如果智能體需要與多個(gè)對(duì)手進(jìn)行交互和競爭,以下哪種算法可以考慮對(duì)手的策略?()A.雙人零和博弈算法B.多智能體強(qiáng)化學(xué)習(xí)算法C.策略梯度算法D.以上算法都可以14、在一個(gè)文本生成任務(wù)中,例如生成詩歌或故事,以下哪種方法常用于生成自然語言文本?()A.基于規(guī)則的方法B.基于模板的方法C.基于神經(jīng)網(wǎng)絡(luò)的方法,如TransformerD.以上都不是15、考慮一個(gè)回歸問題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預(yù)測值與真實(shí)值之間的MSE較大,這意味著什么()A.模型的預(yù)測非常準(zhǔn)確B.模型存在過擬合C.模型存在欠擬合D.無法確定模型的性能16、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。假設(shè)我們有一個(gè)數(shù)據(jù)集,包含了房屋的面積、房間數(shù)量、地理位置等特征,以及對(duì)應(yīng)的房價(jià)。如果我們想要使用監(jiān)督學(xué)習(xí)算法來預(yù)測新房屋的價(jià)格,以下哪種算法可能是最合適的()A.K-Means聚類算法B.決策樹算法C.主成分分析(PCA)D.獨(dú)立成分分析(ICA)17、假設(shè)正在研究一個(gè)醫(yī)療圖像診斷問題,需要對(duì)腫瘤進(jìn)行分類。由于醫(yī)療數(shù)據(jù)的獲取較為困難,數(shù)據(jù)集規(guī)模較小。在這種情況下,以下哪種技術(shù)可能有助于提高模型的性能?()A.使用大規(guī)模的預(yù)訓(xùn)練模型,并在小數(shù)據(jù)集上進(jìn)行微調(diào)B.增加模型的層數(shù)和參數(shù)數(shù)量,提高模型的復(fù)雜度C.減少特征數(shù)量,簡化模型結(jié)構(gòu)D.不進(jìn)行任何特殊處理,直接使用傳統(tǒng)機(jī)器學(xué)習(xí)算法18、在一個(gè)強(qiáng)化學(xué)習(xí)場景中,智能體在探索新的策略和利用已有的經(jīng)驗(yàn)之間需要進(jìn)行平衡。如果智能體過于傾向于探索,可能會(huì)導(dǎo)致效率低下;如果過于傾向于利用已有經(jīng)驗(yàn),可能會(huì)錯(cuò)過更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學(xué)習(xí)率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)19、假設(shè)正在研究一個(gè)自然語言處理任務(wù),需要對(duì)句子進(jìn)行語義理解。以下哪種深度學(xué)習(xí)模型在捕捉句子的長期依賴關(guān)系方面表現(xiàn)較好?()A.雙向長短時(shí)記憶網(wǎng)絡(luò)(BiLSTM)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)D.以上模型都有其特點(diǎn)20、假設(shè)我們正在訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)模型,發(fā)現(xiàn)模型在訓(xùn)練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳。這可能是由于以下哪種原因()A.訓(xùn)練數(shù)據(jù)量不足B.模型過于復(fù)雜,導(dǎo)致過擬合C.學(xué)習(xí)率設(shè)置過高D.以上原因都有可能二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)機(jī)器學(xué)習(xí)中自適應(yīng)矩估計(jì)(Adam)優(yōu)化算法的優(yōu)點(diǎn)是什么?2、(本題5分)機(jī)器學(xué)習(xí)在游戲中的應(yīng)用場景有哪些?3、(本題5分)說明機(jī)器學(xué)習(xí)中樸素貝葉斯分類器的工作原理。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)通過主成分分析對(duì)工業(yè)生產(chǎn)數(shù)據(jù)進(jìn)行特征提取。2、(本題5分)使用決策樹算法對(duì)疾病進(jìn)行診斷。3、(本題5分)利用KNN
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 行政組織理論對(duì)經(jīng)濟(jì)發(fā)展的促進(jìn)作用試題及答案
- 速凍面食制作技術(shù)考核試卷
- 電氣機(jī)械控制系統(tǒng)故障診斷與維修考核試卷
- 道路運(yùn)輸企業(yè)物流成本分析與控制考核試卷
- 高速公路施工規(guī)劃試題及答案
- 公路工程優(yōu)化設(shè)計(jì)試題及答案
- 公路工程施工實(shí)例分析試題及答案
- 全面?zhèn)淇?025年信息系統(tǒng)監(jiān)理師試題及答案
- 屠宰生產(chǎn)安全管理制度
- 地產(chǎn)交叉檢查管理制度
- 負(fù)荷計(jì)算及負(fù)荷
- 中職PLC期末考試試卷
- 《中國文化的根本精神 精裝 》讀書筆記思維導(dǎo)圖
- 2023年湖南高考英語聽力練習(xí)試題「含原文答案」
- 方格稿紙A4直接打印
- MT/T 699-1997煤礦采空區(qū)阻化汽霧防火技術(shù)規(guī)范
- GB/T 7178.1-2006鐵路調(diào)車作業(yè)第1部分:基本規(guī)定
- 初中英語牛津譯林版八年級(jí)下冊(cè)Unit2Travelling(市一等獎(jiǎng))
- GB/T 19363.1-2008翻譯服務(wù)規(guī)范第1部分:筆譯
- GB 7099-2003糕點(diǎn)、面包衛(wèi)生標(biāo)準(zhǔn)
- 《產(chǎn)后抑郁患者護(hù)理研究6000字【論文】》
評(píng)論
0/150
提交評(píng)論