




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重慶市江津區(qū)高2025屆高二下數(shù)學(xué)期末達標(biāo)測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從一個裝有3個白球,3個紅球和3個藍球的袋中隨機抓取3個球,記事件為“抓取的球中存在兩個球同色”,事件為“抓取的球中有紅色但不全是紅色”,則在事件發(fā)生的條件下,事件發(fā)生的概率()A. B. C. D.2.運用祖暅原理計算球的體積時,構(gòu)造一個底面半徑和高都與球半徑相等的圓柱,與半球(如圖一)放置在同一平面上,然后在圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐(如圖二),用任何一個平行與底面的平面去截它們時,可證得所截得的兩個截面面積相等,由此證明該幾何體與半球體積相等.現(xiàn)將橢圓繞軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體(如圖三),類比上述方法,運用祖暅原理可求得其體積等于()A. B. C. D.3.已知函數(shù)(其中)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是()A. B. C. D.4.甲射擊時命中目標(biāo)的概率為,乙射擊時命中目標(biāo)的概率為,則甲乙兩人各自射擊同一目標(biāo)一次,則該目標(biāo)被擊中的概率為()A. B. C. D.5.某面粉供應(yīng)商所供應(yīng)的某種袋裝面粉質(zhì)量服從正態(tài)分布(單位:)現(xiàn)抽取500袋樣本,X表示抽取的面粉質(zhì)量在的袋數(shù),則X的數(shù)學(xué)期望約為()附:若,則,A.171 B.239 C.341 D.4776.若圓錐的高等于底面直徑,側(cè)面積為,則該圓錐的體積為A. B. C. D.7.?dāng)?shù)列滿足是數(shù)列為等比數(shù)列的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件8.下列函數(shù)中,與函數(shù)的奇偶性相同,且在上單調(diào)性也相同的是()A. B. C. D.9.某機構(gòu)需掌握55歲人群的睡眠情況,通過隨機抽查110名性別不同的55歲的人的睡眠質(zhì)量情況,得到如下列聯(lián)表男女總計好402060不好203050總計6050110由得,.根據(jù)表0.0500.0100.0013.8416.63510.828得到下列結(jié)論,正確的是()A.有以下的把握認為“睡眠質(zhì)量與性別有關(guān)”B.有以上的把握認為“睡眠質(zhì)量與性別無關(guān)”C.在犯錯誤的概率不超過0.01的前提下,認為“睡眠質(zhì)量與性別有關(guān)”D.在犯錯誤的概率不超過0.01的前提下,認為“睡眠質(zhì)量與性別無關(guān)”10.針對時下的“抖音熱”,某校團委對“學(xué)生性別和喜歡抖音是否有關(guān)”作了一次調(diào)查,其中被調(diào)查的女生人數(shù)是男生人數(shù)的,男生喜歡抖音的人數(shù)占男生人數(shù)的,女生喜歡抖音的人數(shù)占女生人數(shù)若有95%的把握認為是否喜歡抖音和性別有關(guān),則男生至少有()人.(K2≥k1)1.1511.111k13.8416.635A.12 B.6 C.11 D.1811.方程表示雙曲線的一個充分不必要條件是()A.-3<m<0 B.-3<m<2C.-3<m<4 D.-1<m<312.設(shè)集合A=1,2,4,B=3,4,則集合A.4 B.1,4 C.2,3 D.1,2,3,4二、填空題:本題共4小題,每小題5分,共20分。13.在正四棱錐P-ABCD中,PA=2,直線PA與平面ABCD所成角為60°,E為PC的中點,則異面直線PA與BE所成角的大小為___________.14.已知橢圓的中心在原點,對稱軸為坐標(biāo)軸,短軸的一個端點與橢圓的兩個焦點、組成的三角形的周長為,且,則橢圓的方程為________.15.已知直線,,若與平行,則實數(shù)的值為______.16.復(fù)數(shù)(是虛數(shù)單位)的虛部為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,某地出土的一種“釘”是由四條線段組成,其結(jié)構(gòu)能使它任意拋至水平面后,總有一端所在的直線豎直向上.并記組成該“釘”的四條等長的線段公共點為,釘尖為.(1)判斷四面體的形狀,并說明理由;(2)設(shè),當(dāng)在同一水平面內(nèi)時,求與平面所成角的大?。ńY(jié)果用反三角函數(shù)值表示);(3)若該“釘”著地后的四個線段根據(jù)需要可以調(diào)節(jié)與底面成角的大小,且保持三個線段與底面成角相同,若,,問為何值時,的體積最大,并求出最大值.18.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若,求的取值范圍.19.(12分)若正數(shù)滿足,求的最小值.20.(12分)已知a>0,a≠1,設(shè)p:函數(shù)y=loga(x+3)在(0,+∞)上單調(diào)遞減,q:函數(shù)y=x2+(2a-3)x+1的圖像與x軸交于不同的兩點.如果p∨q真,p∧q假,求實數(shù)a的取值范圍.21.(12分)本小題滿分13分)工作人員需進入核電站完成某項具有高輻射危險的任務(wù),每次只派一個人進去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人.現(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨立.(1)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻€人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?(2)若按某指定順序派人,這三個人各自能完成任務(wù)的概率依次為,其中是的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望);(3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達到最?。?2.(10分)為了研究黏蟲孵化的平均溫度(單位:)與孵化天數(shù)之間的關(guān)系,某課外興趣小組通過試驗得到以下6組數(shù)據(jù):他們分別用兩種模型①,②分別進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,得到如圖所示的殘差圖:經(jīng)過計算,,,.(1)根據(jù)殘差圖,比較模型①、②的擬合效果,應(yīng)選擇哪個模型?(給出判斷即可,不必說明理由)(2)殘差絕對值大于1的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.(精確到).參考公式:線性回歸方程中,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)題意,求出和,由公式即可求出解答.【詳解】解:因為事件為“抓取的球中存在兩個球同色”包括兩個同色和三個同色,所以事件發(fā)生且事件發(fā)生概率為:故.故選:C.本題考查條件概率求法,屬于中檔題.2、C【解析】
根據(jù)橢圓方程,構(gòu)造一個底面半徑為2,高為3的圓柱,通過計算可知高相等時截面面積相等,因而由祖暅原理可得橄欖球幾何體的體積的一半等于圓柱的體積減去圓錐的體積.【詳解】由橢圓方程,構(gòu)造一個底面半徑為2,高為3的圓柱在圓柱中挖去一個以圓柱下底面圓心為頂點、上底面為底面的圓錐當(dāng)截面與底面距離為時,截圓錐得到的截面小圓半徑為則,即所以截面面積為把代入橢圓方程,可求得所以橄欖球形狀幾何體的截面面積為由祖暅原理可得橄欖球幾何體的體積為故選:C本題考查了類比推理的綜合應(yīng)用,空間幾何體體積的求法,屬于中檔題.3、D【解析】
根據(jù)復(fù)合函數(shù)增減性與對數(shù)函數(shù)的增減性來進行判斷求解【詳解】,為減函數(shù),若底數(shù),根據(jù)復(fù)合函數(shù)同增異減的性質(zhì),可得函數(shù)在定義域內(nèi)單調(diào)遞增,與題不符,舍去若底數(shù),根據(jù)復(fù)合函數(shù)同增異減的性質(zhì),可得函數(shù)在定義域內(nèi)單調(diào)遞減,的定義域滿足,,因在區(qū)間上單調(diào)遞減,故有,所以答案選D復(fù)合函數(shù)的增減性滿足同增異減,對于對數(shù)函數(shù)中底數(shù)不能確定的情況,需對底數(shù)進行分類討論,再進行求解4、D【解析】
記事件甲乙兩人各自射擊同一目標(biāo)一次,該目標(biāo)被擊中,利用獨立事件的概率乘法公式計算出事件的對立事件的概率,再利用對立事件的概率公式可得出事件的概率.【詳解】記事件甲乙兩人各自射擊同一目標(biāo)一次,該目標(biāo)被擊中,則事件甲乙兩人各自射擊同一目標(biāo)一次,兩人都未擊中目標(biāo),由獨立事件的概率乘法公式得,,故選D.本題考查獨立事件的概率乘法公式,解題時要弄清楚各事件之間的關(guān)系,可以采用分類討論,本題采用對立事件求解,可簡化分類討論,屬于中等題.5、B【解析】
先根據(jù)正態(tài)分布求得質(zhì)量在的袋數(shù)的概率,再根據(jù)代數(shù)服從二項分布可得.【詳解】,且,,,,而面粉質(zhì)量在的袋數(shù)服從二項分布,即,則.故選:B本題考查了二項分布,解題的關(guān)鍵是求出質(zhì)量在的袋數(shù)的概率,屬于基礎(chǔ)題.6、B【解析】
先設(shè)底面半徑,然后根據(jù)側(cè)面積計算出半徑,即可求解圓錐體積.【詳解】設(shè)圓錐的底面半徑為,則高為,母線長;又側(cè)面積,所以,所以,故選:B.本題考查圓錐的側(cè)面積公式應(yīng)用以及體積的求解,難度一般.圓錐的側(cè)面積公式:,其中是底面圓的半徑,是圓錐的母線長.7、B【解析】分析:由反例得充分性不成立,再根據(jù)等比數(shù)列性質(zhì)證必要性成立.詳解:因為滿足,所以充分性不成立若數(shù)列為等比數(shù)列,則,即必要性成立.選B.點睛:充分、必要條件的三種判斷方法.1.定義法:直接判斷“若則”、“若則”的真假.并注意和圖示相結(jié)合,例如“?”為真,則是的充分條件.2.等價法:利用?與非?非,?與非?非,?與非?非的等價關(guān)系,對于條件或結(jié)論是否定式的命題,一般運用等價法.3.集合法:若?,則是的充分條件或是的必要條件;若=,則是的充要條件.8、A【解析】
先分析的奇偶性以及在的單調(diào)性,然后再對每個選項進行分析.【詳解】函數(shù)為偶函數(shù),且在上為增函數(shù),對于選項,函數(shù)為偶函數(shù),在上為増函數(shù),符合要求;對于選項,函數(shù)是偶函數(shù),在上為減函數(shù),不符合題意;對于選項,函數(shù)為奇函數(shù),不符合題意;對于選項,函數(shù)為非奇非偶函數(shù),不符合要求;只有選項符合要求,故選.奇偶函數(shù)的判斷:(滿足定義域關(guān)于原點對稱的情況下)若,則是奇函數(shù);若,則是偶函數(shù).9、C【解析】
根據(jù)獨立性檢驗的基本思想判斷得解.【詳解】因為,根據(jù)表可知;選C.本題考查獨立性檢驗的基本思想,屬于基礎(chǔ)題.10、A【解析】
由題,設(shè)男生人數(shù)x,然后列聯(lián)表,求得觀測值,可得x的范圍,再利用人數(shù)比為整數(shù),可得結(jié)果.【詳解】設(shè)男生人數(shù)為,則女生人數(shù)為,則列聯(lián)表如下:喜歡抖音不喜歡抖音總計男生女生總計若有95%的把握認為是否喜歡抖音和性別有關(guān),則即解得又因為為整數(shù),所以男生至少有12人故選A本題是一道關(guān)于獨立性檢驗的題目,總體方法是運用列聯(lián)表進行分析求解,屬于中檔題.11、A【解析】由題意知,,則C,D均不正確,而B為充要條件,不合題意,故選A.12、A【解析】
利用交集的運算律可得出集合A∩B。【詳解】由題意可得A∩B=4,故選:A本題考查集合的交集運算,考查計算能力,屬于基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、45°【解析】
先確定直線PA與平面ABCD所成的角,然后作兩異面直線PA和BE所成的角,最后求解.【詳解】∵四棱錐P-ABCD是正四棱錐,∴就是直線PA與平面ABCD所成的角,即=60°,∴是等邊三角形,AC=PA=2,設(shè)BD與AC交于點O,連接OE,則OE是的中位線,即,且,∴是異面直線PA與BE所成的角,正四棱錐P-ABCD中易證平面PAC,∴,中,,∴是等腰直角三角形,∴=45°.∴異面直線PA與BE所成的角是45°.故答案為45°.本題考查異面直線所成的角,考查直線與平面所成的角,考查正四棱錐的性質(zhì).要注意在求空間角時,必須作出其“平面角”并證明,然后再計算.14、或【解析】
先假設(shè)橢圓的焦點在軸上,通過直角三角形△推出,的關(guān)系,利用周長得到第二個關(guān)系,求出,然后求出,求出橢圓的方程,最后考慮焦點在軸上的橢圓也成立,從而得到問題的答案.【詳解】設(shè)橢圓的焦點在軸上,長軸長為,焦距為,如圖所示,則在△中,由得:,所以△的周長為,,,;故所求橢圓的標(biāo)準(zhǔn)方程為.當(dāng)橢圓的焦點落在軸上,同理可得方程為:.故答案為:或本題考查橢圓標(biāo)準(zhǔn)方程的求法,要求先定位、再定量,考查運算求解能力,求解的關(guān)鍵是求出,的值,易錯點是沒有判斷焦點位置.15、【解析】
根據(jù)兩直線平行,列出有關(guān)的等式和不等式,即可求出實數(shù)的值.【詳解】由于與平行,則,即,解得.故答案為:.本題考查利用兩直線平行求參數(shù),解題時要熟悉兩直線平行的等價條件,并根據(jù)條件列式求解,考查運算求解能力,屬于基礎(chǔ)題.16、1【解析】
先將復(fù)數(shù)化簡,再求虛部即可【詳解】,所以復(fù)數(shù)的虛部為:1故答案為1本題考查復(fù)數(shù)的基本概念,在復(fù)數(shù)中,實部為,虛部為,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)正四面體;理由見解析(2);(3)當(dāng)時,最大體積為:;【解析】
(1)根據(jù)線段等長首先確定為四面體外接球球心;又底面,可知為正三棱錐;依次以為頂點均有正三棱錐結(jié)論出現(xiàn),可知四面體棱長均相等,可知其為正四面體;(2)由為四面體外接球球心及底面可得到即為所求角;設(shè)正四面體棱長為,利用表示出各邊,利用勾股定理構(gòu)造方程可求得,從而可求得,進而得到結(jié)果;(3)取中點,利用三線合一性質(zhì)可知,從而可用表示出底面邊長和三棱錐的高,根據(jù)三棱錐體積公式可將體積表示為關(guān)于的函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值,并確定此時的取值,從而得到結(jié)果.【詳解】(1)四面體為正四面體,理由如下:四條線段等長,即到四面體四個頂點距離相等為四面體外接球的球心又底面在底面的射影為的外心四面體為正三棱錐,即,又任意拋至水平面后,總有一端所在的直線豎直向上,若豎直向上可得:可知四面體各條棱長均相等為正四面體(2)由(1)知,四面體為正四面體,且為其外接球球心設(shè)中心為,則平面,如下圖所示:即為與平面所成角設(shè)正四面體棱長為則,在中,,解得:即與平面所成角為:(3)取中點,連接,,為中點且,令,,則設(shè),,則令,解得:,當(dāng)時,;當(dāng)時,當(dāng)時,取極大值,即為最大值:即當(dāng)時,取得最大值,最大值為:此時,即綜上所述,當(dāng)時,體積最大,最大值為:本題考查立體幾何中的幾何體特征判斷、直線與平面所成角的求解、三棱錐體積的最值的求解問題;求解三棱錐體積的最值問題,關(guān)鍵是要把底面面積和三棱錐的高均利用某一變量來進行表示,從而將所求體積最值問題轉(zhuǎn)化為關(guān)于此變量的函數(shù)最值問題的求解,進而通過導(dǎo)數(shù)或其他求解函數(shù)最值的方法求得結(jié)果.18、(1);(2)【解析】
(1)去絕對值,將化為分段函數(shù),解不等式即可;(2)根據(jù)絕對值三角不等式可知,則有,解不等式即可.【詳解】(1)當(dāng)時,,故不等式的解集為;(2),,則或,解得或,故的取值范圍為.本題考查解絕對值不等式,考查絕對值三角不等式的應(yīng)用,屬于中檔題.19、【解析】試題分析:由柯西不等式得,所以試題解析:因為均為正數(shù),且,所以.于是由均值不等式可知,當(dāng)且僅當(dāng)時,上式等號成立.從而.故的最小值為.此時.考點:柯西不等式20、[,1)∪(,+∞).【解析】
先求出當(dāng)命題p,q為真命題時的取值范圍,由p∨q真,p∧q假可得p與q一真一假,由此可得關(guān)于的不等式組,解不等式組可得結(jié)論.【詳解】當(dāng)命題p為真,即函數(shù)y=loga(x+3)在(0,+∞)上單調(diào)遞減時,可得.當(dāng)命題q為真,即函數(shù)y=x2+(2a-3)x+1的圖像與x軸交于不同的兩點,可得,解得,又,所以當(dāng)q為真命題時,有.∵p∨q為真,p∧q為假,∴p與q一真一假.①若p真q假,則,解得;②若p假q真,則,解得.綜上可得或.∴實數(shù)a的取值范圍是[,1)∪(,+∞).根據(jù)命題的真假求參數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- MS Office考試備考指南與試題
- 社會工作法律基礎(chǔ)與初級考試試題及答案
- 系統(tǒng)分析師考試考點關(guān)注方法試題及答案
- 地鐵司機試題及答案
- 漫畫排版面試題及答案
- 精力跑步測試題及答案
- 多媒體展覽設(shè)計標(biāo)準(zhǔn)試題及答案
- 水庫防汛物料管理制度
- 書店人力管理制度
- 水泥燒成車間管理制度
- 短期護工合同協(xié)議書
- 安徽航瑞國際滾裝運輸有限公司招聘筆試題庫2025
- 2025年英語四級考試模擬試卷及答案
- 夫妻實行aa制協(xié)議書
- 2025年下半年北京大興區(qū)地震局招聘臨時輔助用工擬聘用人員易考易錯模擬試題(共500題)試卷后附參考答案
- 2025春季學(xué)期國家安全教育期末考試-國開(XJ)-參考資料
- 2025新版保安員考試試題附含答案
- 2024貴州貴陽農(nóng)商銀行“超享聘旭日”大學(xué)生招聘50人筆試歷年典型考題及考點剖析附帶答案詳解
- 養(yǎng)牛場項目可行性研究報告
- 2025公需課《人工智能賦能制造業(yè)高質(zhì)量發(fā)展》試題及答案
- 2025年三級安全培訓(xùn)考試試題附參考答案【考試直接用】
評論
0/150
提交評論