




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
福建省羅源縣第一中學(xué)2024-2025學(xué)年高二下數(shù)學(xué)期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的函數(shù)的導(dǎo)函數(shù)為,且,若存在實數(shù),使不等式對于任意恒成立,則實數(shù)的取值范圍是()A. B. C. D.2.函數(shù)(,則()A. B. C. D.大小關(guān)系不能確定3.已知不等式x-b≥alnx(a≠0)對任意x∈(0,+∞)恒成立,則A.1-ln2 B.1-ln34.在數(shù)學(xué)興趣課堂上,老師出了一道數(shù)學(xué)思考題,某小組的三人先獨立思考完成,然后一起討論.甲說:“我做錯了!”乙對甲說:“你做對了!”丙說:“我也做錯了!”老師看了他們?nèi)说拇鸢负笳f:“你們?nèi)酥杏星抑挥幸蝗俗鰧α?,有且只有一人說對了.”請問下列說法正確的是()A.乙做對了 B.甲說對了 C.乙說對了 D.甲做對了5.設(shè)是服從二項分布的隨機變量,又,,則與的值分別為(
)A., B., C., D.,6.在中,,則角為()A. B. C. D.7.已知為虛數(shù)單位,則復(fù)數(shù)=()A. B. C. D.8.隨機變量服從正態(tài)分布,則的最小值為()A. B. C. D.9.的展開式中有理項系數(shù)之和為()A. B. C. D.10.使不等式成立的一個充分不必要條件是()A. B. C.或 D.11.下列四個圖各反映了兩個變量的某種關(guān)系,其中可以看作具有較強線性相關(guān)關(guān)系的是()A.①③ B.①④ C.②③ D.①②12.某部門將4名員工安排在三個不同的崗位,每名員工一個崗位,每個崗位至少安排一名員工,且甲乙兩人不安排在同一崗位,則不同的安排方法共有()A.66種 B.36種 C.30種 D.24種二、填空題:本題共4小題,每小題5分,共20分。13.為貫徹教育部關(guān)于全面推進素質(zhì)教育的精神,某學(xué)校推行體育選修課.甲、乙、丙、丁四個人分別從太極拳、足球、擊劍、游泳四門課程中選擇一門課程作為選修課,他們分別有以下要求:甲:我不選太極拳和足球;乙:我不選太極拳和游泳;丙:我的要求和乙一樣;?。喝绻也贿x足球,我就不選太極拳.已知每門課程都有人選擇,且都滿足四個人的要求,那么選擊劍的是___________.14.設(shè)等差數(shù)列的公差為,若的方差為1,則=________.15.函數(shù)在區(qū)間的最大值為_______.16.已知正整數(shù)n,二項式的展開式中含有的項,則n的最小值是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知復(fù)數(shù)滿足(其中為虛數(shù)單位)(1)求;(2)若為純虛數(shù),求實數(shù)的值.18.(12分)現(xiàn)有9名學(xué)生,其中女生4名,男生5名.(1)從中選2名代表,必須有女生的不同選法有多少種?(2)從中選出男、女各2名的不同選法有多少種?(3)從中選4人分別擔(dān)任四個不同崗位的志愿者,每個崗位一人,且男生中的甲與女生中的乙至少有1人在內(nèi),有多少種安排方法?19.(12分)《流浪地球》是由劉慈欣的科幻小說改編的電影,在2019年春節(jié)檔上影,該片上影標(biāo)志著中國電影科幻元年的到來;為了振救地球,延續(xù)百代子孫生存的希望,無數(shù)的人前仆后繼,奮不顧身的精神激蕩人心,催人奮進.某網(wǎng)絡(luò)調(diào)查機構(gòu)調(diào)查了大量觀眾的評分,得到如下統(tǒng)計表:評分12345678910頻率0.030.020.020.030.040.050.080.150.210.36(1)求觀眾評分的平均數(shù)?(2)視頻率為概率,若在評分大于等于8分的觀眾中隨機地抽取1人,他的評分恰好是10分的概率是多少?(3)視頻率為概率,在評分大于等于8分的觀眾中隨機地抽取4人,用表示評分為10分的人數(shù),求的分布列及數(shù)學(xué)期望.20.(12分)如圖,四棱錐中,底面為矩形,面,為的中點.(1)證明:平面;(2)設(shè),,三棱錐的體積,求A到平面PBC的距離.21.(12分)已知函數(shù).(1)若,證明:當(dāng)時,;(2)若在只有一個零點,求的值.22.(10分)如圖,三棱柱中,,,(1)證明:;(2)若平面
平面,,求點到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
對函數(shù)求導(dǎo),分別求出和的值,得到,利用導(dǎo)數(shù)得函數(shù)的最小值為1,把存在實數(shù),使不等式對于任意恒成立的問題轉(zhuǎn)化為對于任意恒成立,分離參數(shù),分類討論大于零,等于零,小于零的情況,從而得到的取值范圍?!驹斀狻坑深}可得,分別把和代入與中得到,解得:;,,即當(dāng)時,,則在上單調(diào)遞減;當(dāng)時,,則在上單調(diào)遞增;要存在實數(shù),使不等式對于任意恒成立,則不等式對于任意恒成立,即不等式對于任意恒成立;(1)當(dāng)時,顯然不等式不成立,舍去;(2)當(dāng)時,不等式對于任意恒成立轉(zhuǎn)化為對于任意恒成立,即,解得:;(3)當(dāng)時,不等式對于任意恒成立轉(zhuǎn)化為對于任意恒成立,即,解得:;綜述所述,實數(shù)的取值范圍是故答案選C本題考查函數(shù)解析式的求法,利用導(dǎo)數(shù)求函數(shù)最小值,分類參數(shù)法,考查學(xué)生轉(zhuǎn)化的思想,分類討論的能力,屬于中檔題。2、C【解析】
對函數(shù)求導(dǎo)得到函數(shù)的導(dǎo)函數(shù),進而得到原函數(shù)的單調(diào)性,從而得到結(jié)果.【詳解】函數(shù)(,對函數(shù)求導(dǎo)得到當(dāng)x>1時,導(dǎo)函數(shù)大于0,函數(shù)單調(diào)增,當(dāng)x<1時,導(dǎo)函數(shù)小于0,函數(shù)單調(diào)遞減,因為,故得到.故答案為C.這個題目考查了導(dǎo)函數(shù)對于研究函數(shù)單調(diào)性的應(yīng)用,函數(shù)的單調(diào)性可以通過常見函數(shù)的性質(zhì)得到,也可以通過定義法證明得到函數(shù)的單調(diào)性,或者通過求導(dǎo)得到函數(shù)的單調(diào)性.3、C【解析】
構(gòu)造函數(shù)gx=x-alnx-b,利用導(dǎo)數(shù)求出函數(shù)y=gx的最小值,由gxmin≥0得出【詳解】構(gòu)造函數(shù)gx=x-alnx-b,由題意知①當(dāng)a<0時,?x>0,g'x>0,此時,函數(shù)y=g當(dāng)x→0時,gx→-∞,此時,②當(dāng)a>0時,令g'x=當(dāng)0<x<a時,g'x<0;當(dāng)x>a所以,函數(shù)y=gx在x=a處取得極小值,亦即最小值,即g∴b≤a-alna,構(gòu)造函數(shù)ha=1-lna-2令h'a=0,得a=2。當(dāng)0<a<2時,h'a此時,函數(shù)y=ha在a=2處取得極大值,亦即最大值,即h因此,b-2a的最大值為-ln2本題考查函數(shù)恒成立問題,考查了函數(shù)的單調(diào)性,訓(xùn)練了導(dǎo)數(shù)在求最值中的應(yīng)用,滲透了分類討論的思想,構(gòu)造函數(shù)利用導(dǎo)數(shù)研究函數(shù)的最值是解決函數(shù)不等式恒成立的常用方法,考查分析問題的能力,屬于難題。4、B【解析】
分三種情況討論:甲說法對、乙說法對、丙說法對,通過題意進行推理,可得出正確選項.【詳解】分以下三種情況討論:①甲的說法正確,則甲做錯了,乙的說法錯誤,則甲做錯了,丙的說法錯誤,則丙做對了,那么乙做錯了,合乎題意;②乙的說法正確,則甲的說法錯誤,則甲做對了,丙的說法錯誤,則丙做對了,矛盾;③丙的說法正確,則丙做錯了,甲的說法錯誤,則甲做對了,乙的說法錯誤,則甲做錯了,自相矛盾.故選:B.本題考查簡單的合情推理,解題時可以采用分類討論法進行假設(shè),考查推理能力,屬于中等題.5、B【解析】分析:根據(jù)二項分布的期望和方差的計算公式,列出方程,即可求解答案.詳解:由題意隨機變量,又由,且,解得,故選B.點睛:本題主要考查了二項分布的期望與方差的計算公式的應(yīng)用,其中熟記二項分布的數(shù)學(xué)期望和方差的計算公式是解答本題的關(guān)鍵,著重考查了推理與運算能力.6、D【解析】
利用余弦定理解出即可.【詳解】本題考查余弦定理的基本應(yīng)用,屬于基礎(chǔ)題.7、A【解析】
根據(jù)復(fù)數(shù)的除法運算,即可求解,得到答案.【詳解】由復(fù)數(shù)的運算,可得復(fù)數(shù),故選A.本題主要考查了復(fù)數(shù)的基本運算,其中解答中熟記的除法運算方法,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、D【解析】
利用正態(tài)密度曲線的對稱性得出,再將代數(shù)式與相乘,展開后可利用基本不等式求出的最小值.【詳解】由于,由正態(tài)密度曲線的對稱性可知,,所以,,即,,由基本不等式可得,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,因此,的最小值為,故選D.本題考查正態(tài)密度概率以及利用基本不等式求最值,解題關(guān)鍵在于利用正態(tài)密度曲線的對稱性得出定值,以及對所求代數(shù)式進行配湊,以便利用基本不等式求最值,考查計算能力,屬于中等題.9、B【解析】分析:在二項展開式的通項公式中,令x的冪指數(shù)為整數(shù),求出r的值,再利用二項式系數(shù)的性質(zhì),即可求得展開式中有理項系數(shù)之和.詳解:(1+)6的展開式的通項公式為Tr+1=?,令為整數(shù),可得r=0,2,4,6,故展開式中有理項系數(shù)之和為+++=25=32,故選:B.點睛:求二項展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數(shù)10、A【解析】
首先解出不等式,因為是不等式成立的一個充分不必要條件,所以滿足是不等式的真子集即可.【詳解】因為,所以或,需要是不等式成立的一個充分不必要條件,則需要滿足是的真子集的只有A,所以選擇A本題主要考查了解不等式以及命題之間的關(guān)系,屬于基礎(chǔ)題.11、B【解析】
兩個變量的散點圖,若樣本點成帶狀分布,則兩個變量具有線性相關(guān)關(guān)系,∴兩個變量具有線性相關(guān)關(guān)系的圖是①和④,故選B.考點:變量間的相關(guān)關(guān)系12、C【解析】
根據(jù)分步乘法計數(shù)原理,第一步先將4名員工分成3組并去掉甲乙同組的情況,第二步將3組員工安排到3個不同的崗位?!驹斀狻拷猓河深}意可得,完成這件事分兩步,第一步,先將4名員工分成3組并去掉甲乙同組的情況,共有種,第二步,將3組員工安排到3個不同的崗位,共有種,∴根據(jù)分步乘法計數(shù)原理,不同的安排方法共有種,故選:C.本題主要考查計數(shù)原理,考查組合數(shù)的應(yīng)用,考查不同元素的分配問題,通常用除法原理,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、丙【解析】
列出表格,用√表示已選的,用×表示未選的課程,逐個將每門課程所選的人確定下來,即可得知選擊劍的人是誰?!驹斀狻吭谌缦聢D中,用√表示該門課程被選擇,用×表示該門課程未選,且每行每列只有一個勾,太極拳足球擊劍游泳甲××√乙×√②×丙×√×丁√①從上述四個人的要求中知,太極拳甲、乙、丙都不選擇,則丁選擇太極拳,丁所說的命題正確,其逆否命題為“我選太極拳,那么乙選足球”為真,則選足球的是乙,由于乙、丙、丁都為選擇游泳,那么甲選擇游泳,最后只有丙選擇擊劍。故答案為:丙。本題考查合情推理,充分利用假設(shè)法去進行論證,考查推理論證能力,屬于中等題。14、【解析】由題意得,因此15、【解析】
利用導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由,所以當(dāng)時,,所以則在單調(diào)遞增,所以故答案為:本題考查函數(shù)在定區(qū)間的最值,關(guān)鍵在于利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬基礎(chǔ)題.16、4.【解析】分析:根據(jù)二項式呃展開式得到第r+1項為,,對r,n賦值即可.詳解:二項式的展開式中第r+1項為則,當(dāng)r=1時,n=4。故答案為:4.點睛:這個題目考查的是二項式中的特定項的系數(shù)問題,在做二項式的問題時,看清楚題目是求二項式系數(shù)還是系數(shù),還要注意在求系數(shù)和時,是不是缺少首項;解決這類問題常用的方法有賦值法,求導(dǎo)后賦值,積分后賦值等.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)設(shè),可得,解得從而可得結(jié)果;(2)由(1)知,利用為純虛數(shù)可得,從而可得結(jié)果.【詳解】(1)設(shè),由于則:解得:(2)由(1)知又為純虛數(shù),本題主要考查的是復(fù)數(shù)的分類、復(fù)數(shù)的乘法、除法運算,屬于中檔題.解題時一定要注意和以及運算的準(zhǔn)確性,否則很容易出現(xiàn)錯誤.18、(1)26;(2)60;(3)2184【解析】
(1)采用間接法;(2)采用直接法;(3)先用間接法求出從中選4人,男生中的甲與女生中的乙至少有1人在內(nèi)的選法種數(shù),再分配到四個不同崗位即可.【詳解】(1)從中選2名代表,沒有女生的選法有種,所以從中選2名代表,必須有女生的不同選法有種.(2)從中選出男、女各2名的不同選法有種.(3)男生中的甲與女生中的乙至少有1人被選的不同選法有種,將這4人安排到四個不同的崗位共有種方法,故共有種安排方法.本題考查排列與組合的綜合問題,考查學(xué)生的邏輯思想能力,是一道基礎(chǔ)題.19、(1)8;(2);(3)分布列見解析,2.【解析】
(1)利用平均數(shù)的公式求解即可;(2)所求概率為評分恰好是10分的概率與評分大于等于8分的概率的比,即可求解;(3)由題知服從,進而去利用公式求解分布列及期望即可.【詳解】(1)設(shè)觀眾評分的平均數(shù)為,則(2)設(shè)A表示事件“1位觀眾評分不小于8分”,B表示事件“1位觀眾評分是10分”(3)由題知服從,(,1,2,3,4)則的分布列為:01234P本題考查平均數(shù),考查二項分布的分布列與期望,考查數(shù)據(jù)處理能力.20、(1)證明見解析(2)到平面的距離為【解析】
試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出A到平面PBD的距離試題解析:(1)設(shè)BD交AC于點O,連結(jié)EO.因為ABCD為矩形,所以O(shè)為BD的中點.又E為PD的中點,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由題設(shè)易知,所以故,又所以到平面的距離為法2:等體積法由,可得.由題設(shè)易知,得BC假設(shè)到平面的距離為d,又因為PB=所以又因為(或),,所以考點:線面平行的判定及點到面的距離21、(1)見解析;(2)【解析】
分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點,等價研究的零點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)計單位保密管理制度
- 訪問權(quán)限分配管理制度
- 訴訟仲裁案件管理制度
- 診所收費制度管理制度
- 診療項目內(nèi)部管理制度
- 財務(wù)資產(chǎn)報告管理制度
- 財政實行臺賬管理制度
- 貨代公司物流管理制度
- 貨物源頭車輛管理制度
- 貨車司機績效管理制度
- 保溫材料安全管理制度
- 2025年甘肅高考物理試卷真題及答案詳解(精校打印版)
- 2025至2030中國工業(yè)電機行業(yè)市場發(fā)展現(xiàn)狀及商業(yè)模式與投資發(fā)展報告
- 部編人教版小學(xué)語文1-6年級詞語表
- 測繪類技術(shù)設(shè)計管理制度
- 中醫(yī)艾灸盒課件下載
- 手術(shù)室環(huán)境衛(wèi)生管理要求
- 浙江省溫州市名校2025屆七下數(shù)學(xué)期末考試試題含解析
- 《鐵路旅客運輸組織(活頁式)》課件 7.3 旅客傷害應(yīng)急處置
- 公司合同月結(jié)協(xié)議書
- 2025年海綿項目評估報告
評論
0/150
提交評論