




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省龍巖市永定區(qū)金豐片2025年八年級數(shù)學第二學期期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列各式從左到右的變形為分解因式的是()A.x(x﹣y)=x2﹣xy B.x2+2xy+1=x(x+2y)+1C.(y﹣1)(y+1)=y(tǒng)2﹣1 D.x(x﹣3)+3(x﹣3)=(x+3)(x﹣3)2.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.等邊三角形 B.等腰直角三角形C.平行四邊形 D.菱形3.人體血液中,紅細胞的直徑約為0.0000077m.用科學記數(shù)法表示0.0000077m是()A.0.77×10﹣5 B.7.7×10﹣5 C.7.7×10﹣6 D.77×10﹣74.如圖,在菱形中,對角線、相交于點,,,過作的平行線交的延長線于點,則的面積為()A.22 B.24 C.48 D.445.如圖,菱形OABC的頂點O是原點,頂點B在y軸上,菱形的兩條對角線的長分別是6和4,反比例函數(shù)y=(x<0)的圖象經(jīng)過點C,則k的值為()A.24 B.-12 C.-6 D.±66.為考察兩名實習工人的工作情況,質(zhì)檢部將他們工作第一周每天生產(chǎn)合格產(chǎn)品的個數(shù)整理成甲,乙兩組數(shù)據(jù),如下表:甲26778乙23488關(guān)于以上數(shù)據(jù),說法正確的是()A.甲、乙的眾數(shù)相同 B.甲、乙的中位數(shù)相同C.甲的平均數(shù)小于乙的平均數(shù) D.甲的方差小于乙的方差7.下列二次根式中,化簡后不能與進行合并的是()A. B. C. D.8.下列分解因式正確的是()A. B.C. D.9.如圖①,在平面直角坐標系中,平行四邊形ABCD在第一象限,且AB∥x軸.直線y=-x從原點出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數(shù)圖象如圖②,那么平行四邊形ABCD的面積為()A.4 B. C. D.810.用反證法證明“三角形中至少有一個內(nèi)角大于或等于”時,應假設(shè)()A.三角形的二個內(nèi)角小于 B.三角形的三個內(nèi)角都小于C.三角形的二個內(nèi)角大于 D.三角形的三個內(nèi)角都大于二、填空題(每小題3分,共24分)11.分解因式:.12.如圖,菱形ABCD的對角線的長分別為2和5,P是對角線AC上任一點(點P不與點A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是__________.13.如圖,兩個完全相同的三角尺ABC和DEF在直線l上滑動.要使四邊形CBFE為菱形,還需添加的一個條件是____(寫出一個即可).14.在甲、乙兩名同學中選拔一人參加校園“中華詩詞”大賽,在相同的測試條件下,兩人5次測試成績分別是:甲:79,86,82,85,83;乙:88,79,90,81,72;數(shù)據(jù)波動較小的一同學是_____.15.如圖,一艘漁船以30海里/h的速度由西向東追趕魚群.在A處測得小島C在船的北偏東60°方向;40min后漁船行至B處,此時測得小島C在船的北偏東方向.問:小島C于漁船的航行方向的距離是________________海里(結(jié)果可用帶根號的數(shù)表示).16.如圖,等邊△ABC內(nèi)有一點O,OA=3,OB=4,OC=5,以點B為旋轉(zhuǎn)中心將BO逆時針旋轉(zhuǎn)60°得到線段,連接,下列結(jié)論:①可以看成是△BOC繞點B逆時針旋轉(zhuǎn)60°得到的;②點O與的距離為5;③∠AOB=150°;④S四邊形AOBO′=6+4;⑤=6+.其中正確的結(jié)論有_____.(填正確序號)17.已知是方程的一個根,_________________.18.如圖,?ABCD的頂點B在矩形AEFC的邊EF上,點B與點E、F不重合,若ΔACD的面積為4,則圖中陰影部分兩個三角形的面積和為三、解答題(共66分)19.(10分)2013年1月1日新交通法規(guī)開始實施.為了解某社區(qū)居民遵守交通法規(guī)情況,小明隨機選取部分居民就“行人闖紅燈現(xiàn)象”進行問卷調(diào)查,調(diào)查分為“A:從不闖紅燈;B:偶爾闖紅燈;C:經(jīng)常闖紅燈;D:其他”四種情況,并根據(jù)調(diào)查結(jié)果繪制出部分條形統(tǒng)計圖(如圖1)和部分扇形統(tǒng)計圖(如圖2).請根據(jù)圖中信息,解答下列問題:(1)本次調(diào)查共選取名居民;(2)求出扇形統(tǒng)計圖中“C”所對扇形的圓心角的度數(shù),并將條形統(tǒng)計圖補充完整;(3)如果該社區(qū)共有居民1600人,估計有多少人從不闖紅燈?20.(6分)如圖,在矩形ABCD中,AE平分∠BAD,交BC于點E,過點E作EF⊥AD于點F,求證:四邊形ABEF是正方形.21.(6分)某單位欲從內(nèi)部招聘管理人員一名,對甲、乙、丙三名候選人進行了筆試和面試兩項測試,三人的測試成績?nèi)缦卤硭荆焊鶕?jù)錄用程序,組織200名職工對三人利用投票推薦的方式進行民主評議,三人得票率(沒有棄權(quán)票,每位職工只能推薦1人)如扇形圖所示,每得一票記作1分.(l)如果根據(jù)三項測試的平均成績確定錄用人選,那么誰將被錄用(精確到0.01)?(2)根據(jù)實際需要,單位將筆試、面試、民主評議三項測試得分按5:2:3的比例確定個人成績,那么誰將被錄用?22.(8分)如圖,矩形ABCD中,點E,F(xiàn)分別在邊AB與CD上,點G、H在對角線AC上,AG=CH,BE=DF.(1)求證:四邊形EGFH是平行四邊形;(2)若EG=EH,AB=8,BC=1.求AE的長.23.(8分)如圖,在平行四邊形的對角線上存在,兩個點,且,試探究與的關(guān)系.24.(8分)觀察下列各式,,,,由此可推斷(1)==.(2)請猜想(1)的特點的一般規(guī)律,用含m的等式表示出來為=(m表示正整數(shù)).(3)請參考(2)中的規(guī)律計算:25.(10分)某草莓種植大戶,今年從草莓上市到銷售完需要20天,售價為11元/千克,成本y(元/千克)與第x天成一次函數(shù)關(guān)系,當x=10時,y=7,當x=11時,y=6.1.(1)求成本y(元/千克)與第x天的函數(shù)關(guān)系式并寫出自變量x的取值范圍;(2)求第幾天每千克的利潤w(元)最大?最大利潤是多少?(利潤=售價-成本)26.(10分)某家電銷售商城電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元,每臺電冰箱的進價比每臺空調(diào)的進價多400元,商城用80000元購進電冰箱的數(shù)量與用64000元購進空調(diào)的數(shù)量相等.(1)求每臺電冰箱與空調(diào)的進價分別是多少?(2)現(xiàn)在商城準備一次購進這兩種家電共100臺,設(shè)購進電冰箱臺,這100臺家電的銷售總利潤為元,要求購進空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,試確定獲利最大的方案以及最大利潤.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】
根據(jù)因式分解的定義:將多項式和的形式化為整式積的形式,判斷即可.【詳解】解:A、沒把一個多項式轉(zhuǎn)化成幾個整式積,故A錯誤;B、沒把一個多項式轉(zhuǎn)化成幾個整式積,故B錯誤;C、是整式的乘法,故C錯誤;D、把一個多項式轉(zhuǎn)化成幾個整式積,故D正確;故選:D.【點睛】此題考查了因式分解的意義,熟練掌握因式分解的定義是解本題的關(guān)鍵.2、D【解析】
按照軸對稱圖形和中心對稱圖形的定義逐項判斷即可.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、等腰直角三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;D、菱形是軸對稱圖形,也是中心對稱圖形,故本選項正確.故選:D.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,屬于基礎(chǔ)題型,熟知軸對稱圖形和中心對稱圖形的定義是解題的關(guān)鍵.3、C【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:故選C.4、B【解析】
先判斷出四邊形ACED是平行四邊形,從而得出DE的長度,根據(jù)菱形的性質(zhì)求出BD的長度,利用勾股定理的逆定理可得出△BDE是直角三角形,計算出面積即可.【詳解】解:∵AD∥BE,AC∥DE,∴四邊形ACED是平行四邊形,∴AC=DE=6,在RT△BCO中,BO=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=.故答案為:B.【點睛】此題考查了菱形的性質(zhì)、勾股定理的逆定理及三角形的面積,屬于基礎(chǔ)題,求出BD的長度,判斷△BDE是直角三角形,是解答本題的關(guān)鍵.5、C【解析】【分析】根據(jù)菱形性質(zhì)求出C的坐標,再代入解析式求k的值.【詳解】∵菱形的兩條對角線的長分別是6和4,∴C(﹣3,2).∵點C在反比例函數(shù)y=(x<0)的圖象上,∴,解得k=-6.故選:C【點睛】本題考核知識點:菱形和反比例函數(shù).解題關(guān)鍵點:利用菱形性質(zhì)求C的坐標.6、D【解析】
分別根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的定義進行求解后進行判斷即可得.【詳解】甲:數(shù)據(jù)7出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為7,排序后最中間的數(shù)是7,所以中位數(shù)是7,,=4.4,乙:數(shù)據(jù)8出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為8,排序后最中間的數(shù)是4,所以中位數(shù)是4,,=6.4,所以只有D選項正確,故選D.【點睛】本題考查了眾數(shù)、中位數(shù)、平均數(shù)、方差,熟練掌握相關(guān)定義及求解方法是解題的關(guān)鍵.7、C【解析】
首先根據(jù)題意,只要含有同類項即可合并,然后逐一進行化簡,得出A、B、D選項都含有同類項,而C選項不含同類項,故選C.【詳解】解:根據(jù)題意,只要含有同類項即可合并,A中=,可以與進行合并;B中=,可以與進行合并;C中=,與無同類項,不能合并;D中=,可以與進行合并.故選C.【點睛】此題主要考查二次根式的化簡與合并.8、C【解析】【分析】根據(jù)因式分解的步驟:先提公因式,再用公式法分解即可求得答案.注意分解要徹底.【詳解】A.,故A選項錯誤;B.,故B選項錯誤;C.,故C選項正確;D.=(x-2)2,故D選項錯誤,故選C.【點睛】本題考查了提公因式法,公式法分解因式.注意因式分解的步驟:先提公因式,再用公式法分解.注意分解要徹底.9、D【解析】
根據(jù)圖象可以得到當移動的距離是4時,直線經(jīng)過點A,當移動距離是7時,直線經(jīng)過D,在移動距離是8時經(jīng)過B,則AB=8-4=4,當直線經(jīng)過D點,設(shè)交AB與N,則,作DM⊥AB于點M.利用三角函數(shù)即可求得DM即平行四邊形的高,然后利用平行四邊形的面積公式即可求解.【詳解】根據(jù)圖象可以得到當移動的距離是4時,直線經(jīng)過點A,當移動距離是7時,直線經(jīng)過D,在移動距離是8時經(jīng)過B,則,如圖所示,當直線經(jīng)過D點,設(shè)交AB與N,則,作于點M.與軸形成的角是,軸,,則△DMN為等腰直角三角形,設(shè)由勾股定理得,解得,即DM=2則平行四邊形的面積是:.故選:D.【點睛】本題考查一次函數(shù)與幾何綜合,解題的關(guān)鍵利用l與m的函數(shù)圖像判斷平行四邊形的邊長與高.10、B【解析】
反證法的步驟中,第一步是假設(shè)結(jié)論不成立,反面成立,可據(jù)此進行判斷.【詳解】反證法證明命題“三角形中至少有一個角大于或等于60°”時,首先應假設(shè)這個三角形中每一個內(nèi)角都小于60°,故選:B.【點睛】本題考查的是反證法的應用,反證法的一般步驟是:①假設(shè)命題的結(jié)論不成立;②從這個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;③由矛盾判定假設(shè)不正確,從而肯定原命題的結(jié)論正確.二、填空題(每小題3分,共24分)11、.【解析】
先把式子寫成x2-22,符合平方差公式的特點,再利用平方差公式分解因式.【詳解】x2-4=x2-22=(x+2)(x-2).故答案為.【點睛】此題考查的是利用公式法因式分解,因式分解的步驟為:一提公因式;二看公式.12、【解析】
根據(jù)題意可得陰影部分的面積等于△ABC的面積,因為△ABC的面積是菱形面積的一半,根據(jù)已知可求得菱形的面積則不難求得陰影部分的面積.【詳解】設(shè)AP,EF交于O點,∵四邊形ABCD為菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四邊形AEFP是平行四邊形.∴S△POF=S△AOE.即陰影部分的面積等于△ABC的面積.∵△ABC的面積等于菱形ABCD的面積的一半,菱形ABCD的面積=ACBD=5,∴圖中陰影部分的面積為5÷2=.13、CB=BF;BE⊥CF;∠EBF=60°;BD=BF等(寫出一個即可).【解析】
根據(jù)鄰邊相等的平行四邊形是菱形或?qū)蔷€互相垂直的平行四邊形是菱形進而判斷即可.【詳解】解:根據(jù)題意可得出:四邊形CBFE是平行四邊形,
當CB=BF時,平行四邊形CBFE是菱形,
當CB=BF;BE⊥CF;∠EBF=60°;BD=BF時,都可以得出四邊形CBFE為菱形.
故答案為:如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等.【點睛】此題主要考查了菱形的判定,關(guān)鍵是熟練掌握菱形的判定方法:①菱形定義:一組鄰邊相等的平行四邊形是菱形;②四條邊都相等的四邊形是菱形;③對角線互相垂直的平行四邊形是菱形.14、答案為甲【解析】
方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.【詳解】解:=83(分),=82(分);經(jīng)計算知S甲2=6,S乙2=1.S甲2<S乙2,∴甲的平均成績高于乙,且甲的成績更穩(wěn)定,故答案為甲【點睛】本題主要考查平均數(shù)、方差等知識,解題的關(guān)鍵是記?。悍讲钍欠从骋唤M數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.15、【解析】
過C作CD⊥AB,易得∠BAC=∠BCA=30°,進而得到BC=BA=20,在Rt△BCD中,利用30°角所對的直角邊是斜邊的一半與勾股定理即可求出CD.【詳解】如圖,過C作CD⊥AB,∵漁船速度為30海里/h,40min后漁船行至B處∴AB=海里由圖可知,∠BAC=90°-60°=30°,∠ABC=90°+30°=120°,∴∠BCA=180°-120°-30°=30°∴∠BAC=∠BCA∴BC=BA=20海里在Rt△BCD中,∠BCD=30°,∴BD=BC=10海里∴CD=海里故答案為:.【點睛】本題考考查了等腰三角形的性質(zhì),含30°角的直角三角形的性質(zhì)與勾股定理,熟練掌握30°角所對的直角邊是斜邊的一半是解題的關(guān)鍵.16、①③⑤【解析】
如圖,首先證明△OBO′為等邊三角形,得到OO′=OB=4,故選項②錯誤;證明△ABO′≌△CBO,得到選項①正確;運用勾股定理逆定理證明△AOO′為直角三角形,求出∠AOB的度數(shù),得到選項③正確;運用面積公式求出四邊形AOBO′的面積,可判斷選項④錯誤;將△AOB繞A點逆時針旋轉(zhuǎn)60°至△AO″C,可得△AOO″是邊長為3的等邊三角形,△COO″是邊長為3,4,5的直角三角形,再根據(jù)S△AOC+S△AOB=S四邊形AOCO″=S△COO″+S△AOO″進行計算即可判斷選項⑤正確.【詳解】解:如下圖,連接OO′,∵△ABC為等邊三角形,∴∠ABC=60°,AB=CB;由題意得:∠OBO′=60°,OB=O′B,∴△OBO′為等邊三角形,∠ABO′=∠CBO,∴OO′=OB=4;∠BOO′=60°,∴選項②錯誤;在△ABO′與△CBO中,,∴△ABO′≌△CBO(SAS),∴AO′=OC=5,可以看成是△BOC繞點B逆時針旋轉(zhuǎn)60°得到的,∴選項①正確;在△AOO′中,∵32+42=52,∴△AOO′為直角三角形,∴∠AOO′=90°,∠AOB=90°+60°=150°,∴選項③正確;∵S四邊形AOBO′=×42×sin60°+×3×4=4+6,∴選項④錯誤;如下圖,將△AOB繞A點逆時針旋轉(zhuǎn)60°至△AO″C,連接OO″,同理可得,△AOO″是邊長為3的等邊三角形,△COO″是邊長為3,4,5的直角三角形,∴S△AOC+S△AOB=S四邊形AOCO″=S△COO″+S△AOO″=×3×4+×32×sin60°=6+.故⑤正確;故答案為:①③⑤.【點睛】本題考查旋轉(zhuǎn)的性質(zhì)、三角形全等的判定和性質(zhì)、等邊三角形的判定和性質(zhì)、勾股定理的逆定理,熟練掌握旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì)、勾股定理的逆定理的應用是解題的關(guān)鍵.17、15【解析】
一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即可對這個數(shù)代替未知數(shù)所得式子變形,即可求解.【詳解】解:是方程的根,.故答案為:15.【點睛】本題考查的是一元二次方程的根,即方程的解的定義.解題的關(guān)鍵是熟練掌握方程的解的定義,正確得到.18、1【解析】
根據(jù)平行四邊形的性質(zhì)求出AD=BC,DC=AB,證△ADC≌△CBA,推出△ABC的面積是1,求出AC×AE=8,即可求出陰影部分的面積.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC,DC=AB,∵在△ADC和△CBA中AD=BCDC=AB∴△ADC≌△CBA,∵△ACD的面積為1,∴△ABC的面積是1,即12AC×AE=8,∴陰影部分的面積是8﹣1=1,故答案為1.【點睛】本題考查了矩形性質(zhì),平行四邊形性質(zhì),全等三角形的性質(zhì)和判定的應用,主要考查學生運用面積公式進行計算的能力,題型較好,難度適中.三、解答題(共66分)19、(1)80人;(2)見解析;(3)1120人.【解析】
(1)根據(jù)為A的人數(shù)與所占的百分比列式計算即可求出被調(diào)查的居民人數(shù);(2)求出為C的人數(shù),得到所占的百分比,然后乘以360°,從而求出扇形統(tǒng)計圖中“C”所對扇形的圓心角的度數(shù),然后補全條形統(tǒng)計圖即可;(3)用全區(qū)總?cè)藬?shù)乘以從不闖紅燈的人數(shù)所占的百分比,進行計算即可得解.【詳解】(1)本次調(diào)查的居民人數(shù)=56÷70%=80人;(2)為“C”的人數(shù)為:80﹣56﹣12﹣4=8人,“C”所對扇形的圓心角的度數(shù)為:×360°=36°補全統(tǒng)計圖如圖;(3)該區(qū)從不闖紅燈的人數(shù)=1600×70%=1120人.20、證明見解析.【解析】
由矩形的性質(zhì)得出,,證出四邊形是矩形,再證明,即可得出四邊形是正方形;【詳解】證明:四邊形是矩形,,,,,四邊形是矩形,平分,,,,四邊形是正方形.【點睛】本題考查了矩形的性質(zhì)與判定、正方形的判定與性質(zhì)等知識;熟練掌握矩形的性質(zhì),證明四邊形是正方形是解決問題的關(guān)鍵.21、(1)候選人乙將被錄用;(2)候選人丙將被錄用.【解析】
(1)先根據(jù)扇形統(tǒng)計圖中的數(shù)據(jù)即可求得甲、乙、丙的民主評議得分,再根據(jù)平均數(shù)的概念求得甲、乙、丙的平均成績,進行比較;
(2)根據(jù)加權(quán)成績分別計算三人的個人成績,進行比較.【詳解】解:(l)甲、乙、丙的民主評議得分分別為:甲:200×25%=50分,乙:200×40%=80分,丙:200×35%=70分.甲的平均成績?yōu)椋ǚ郑?,乙的平均成績?yōu)椋海ǚ郑?,丙的平均成績(分).由?.67>1>2.67,所以候選人乙將被錄用.(2)如果將筆試、面試、民主評議三項測試得分按5:2:3的比例確定個人成績,那么,甲的個人成績?yōu)椋海ǚ郑┮业膫€人成績?yōu)椋海ǚ郑膫€人成績?yōu)椋海ǚ郑┯捎诒膫€人成績最高,所以候選人丙將被錄用.【點睛】本題考查加權(quán)平均數(shù)的概念及求法,要注意各部分的權(quán)重與相應的數(shù)據(jù)的關(guān)系,牢記加權(quán)平均數(shù)的計算公式是解題的關(guān)鍵.22、(1)見解析;(2)AE=2.【解析】
(1)依據(jù)矩形的性質(zhì),即可得出△AEG≌△CFH,進而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四邊形EGFH是平行四邊形;(2)由菱形的性質(zhì),即可得到EF垂直平分AC,進而得出AF=CF=AE,設(shè)AE=x,則FC=AF=x,DF=8-x,依據(jù)Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的長.【詳解】(1)∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,又∵CH=AG,∴△AEG≌△CFH,∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四邊形EGFH是平行四邊形;(2)如圖,連接EF,AF,∵EG=EH,四邊形EGFH是平行四邊形,∴四邊形GFHE為菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE,設(shè)AE=x,則FC=AF=x,DF=8-x,在Rt△ADF中,AD2+DF2=AF2,∴12+(8-x)2=x2,解得x=2,∴AE=2.【點睛】此題考查了菱形的性質(zhì)、矩形的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理的運用.注意準確作出輔助線是解此題的關(guān)鍵.23、見解析.【解析】
由,得到BQ=DP,再根據(jù)平行四邊形性質(zhì)可得AD=BC,AD∥BC,可證△ADP≌△CBQ(SAS),即可得:AP=CQ,∠APD=∠CQB.可得∠APB=∠DQC,結(jié)論可證.【詳解】解:AP=CQ,AP∥CQ;理由:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC
∴∠ADP=∠CBQ,
∵BP=DQ,∴DP=BQ
∴△ADP≌△CBQ(SAS),
∴AP=CQ,∠APD=∠CQB.
∵∠APB=180°-∠APD,∠DQC=180°-∠CQB
∴∠APB=∠DQC
∴AP∥CQ.∴AP=CQ,AP∥CQ【點睛】本題考查了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機電工程2025年供需分析試題及答案
- 網(wǎng)絡工程師職業(yè)技能要求試題及答案
- 網(wǎng)絡工程管理與實施試題及答案
- 軟考網(wǎng)絡工程師考試復習計劃與試題及答案
- 如何應對2025年信息系統(tǒng)考試試題及答案
- 探索西方政治制度對全球治理的影響試題及答案
- 網(wǎng)絡運營維護試題及答案探討
- 網(wǎng)絡技術(shù)標準與規(guī)范試題及答案
- 西方政治制度對全球治理的貢獻試題及答案
- 西方政治制度的有效治理探討試題及答案
- 重癥醫(yī)學科醫(yī)院感染控制原則專家共識(2024)解讀
- 2025年江蘇省無錫市惠山區(qū)中考三模歷史試題(含答案)
- 游泳館會員合同協(xié)議書
- 鐵磁材料漏磁信號高效計算與缺陷精準反演的關(guān)鍵技術(shù)探索
- 數(shù)據(jù)庫應用技術(shù)-第三次形考作業(yè)(第10章~第11章)-國開-參考資料
- 基礎(chǔ)有機化學實驗知到智慧樹章節(jié)測試課后答案2024年秋浙江大學
- 科研方法論智慧樹知到期末考試答案章節(jié)答案2024年南開大學
- 光引發(fā)劑的性能與應用
- 圖像處理和分析(上冊)課后習題答案(章毓晉)
- 韻能cfd風環(huán)境模擬stream scstream答疑軟件常見q a匯總
- 門診疾病診斷證明書模板
評論
0/150
提交評論