人工智能在材料科學(xué)中的戰(zhàn)略整合以提高性能 STRATEGIC INTEGRATION OF AI IN MATERIALS SCIENCE FOR ENHANCED PERFORMANCE_第1頁
人工智能在材料科學(xué)中的戰(zhàn)略整合以提高性能 STRATEGIC INTEGRATION OF AI IN MATERIALS SCIENCE FOR ENHANCED PERFORMANCE_第2頁
人工智能在材料科學(xué)中的戰(zhàn)略整合以提高性能 STRATEGIC INTEGRATION OF AI IN MATERIALS SCIENCE FOR ENHANCED PERFORMANCE_第3頁
人工智能在材料科學(xué)中的戰(zhàn)略整合以提高性能 STRATEGIC INTEGRATION OF AI IN MATERIALS SCIENCE FOR ENHANCED PERFORMANCE_第4頁
人工智能在材料科學(xué)中的戰(zhàn)略整合以提高性能 STRATEGIC INTEGRATION OF AI IN MATERIALS SCIENCE FOR ENHANCED PERFORMANCE_第5頁
已閱讀5頁,還剩41頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:

UnleashingthePotentialofIoT,AI,andEdgeIntelligence

E-ISBN:978-93-6252-115-6IIPSeries,Chapter13

STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE

235

STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE

Abstract

TheintegrationofArtificialIntelligence(AI)inmaterialssciencehasemergedasatransformativeparadigm,revolutionizingthedesign,development,andoptimizationofmaterialswithenhancedperformancecharacteristics.ThispaperexploresthestrategicintegrationofAItechniquessuchasmachinelearning,deeplearning,andcomputationalmodellinginmaterialssciencetoacceleratethediscoveryprocess,optimizematerialproperties,anddriveinnovation.ByleveragingAI-drivenapproaches,researcherscanovercometraditionallimitationsinmaterialsdevelopment,leadingtobreakthroughsinvariousfieldsrangingfromelectronicsandenergystoragetohealthcareandbeyond.Thispaperexaminesthecurrentstate-of-the-artAImethodologiesinmaterialsscience,discusseskeychallengesandopportunities,andproposesstrategicframeworksforharnessingAItounlockthefullpotentialofadvancedmaterials.

Keywords:ArtificialIntelligence,MaterialsScience,MachineLearning,DeepLearning,ComputationalModelling,Optimization,PerformanceEnhancement.

Authors

AdityaSingh

EEEDepartment

MaharajaAgrasenInstituteofTechnology

NewDelhi,India

adityasingh13148@

DeepanshiAgarwal

AIDSDepartment

MaharajaAgrasenInstituteofTechnology

NewDelhi,India

deepanshi2agarwal@

Ms.MonikaBhardwaj

EEEDepartment

MaharajaAgrasenInstituteofTechnology

NewDelhi,India

monikagupta.eee@mait.ac.in

Dr.Laxya

AssistantProfessor

DepartmentofElectricaland

ElecteonicsEngineering,MaharajaAgrasenInstituteofTechnology,

NewDelhi,India.

236

AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:

UnleashingthePotentialofIoT,AI,andEdgeIntelligence

E-ISBN:978-93-6252-115-6IIPSeries,Chapter13

STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE

I.INTRODUCTION

Materialsscienceplaysacrucialroleinadvancingvariousindustriesbyenablingthedevelopmentofnovelmaterialswithtailoredpropertiestomeetspecificapplicationrequirements.However,thetraditionaltrial-and-errorapproachtomaterialsdiscoveryandoptimizationistime-consuming,resource-intensive,andoftenlimitedbythevastdesignspaceofmaterials.Inrecentyears,theintegrationofArtificialIntelligence(AI)techniqueshasrevolutionizedthematerialssciencelandscape,offeringnewavenuesforacceleratingthediscoveryprocess,optimizingmaterialproperties,andoptimizingmaterialproperties,andachievingunprecedentedlevelsofperformance.ThissectionprovidesanoverviewofthestrategicintegrationofAIinmaterialsscience,highlightingitspotentialtodriveinnovationandaddresslongstandingchallenges[1].

Table1:TypesofLearning

Type

MLMethods

Application

Supervisedlearning

LinearRegression.LogisticRegression.DecisionTree.

KNearestNeighbours.RandomForest.

NaiveBayes

Bioinformatics,

speechrecognition,spamdetection,

objectrecognitionforthevision

UnsupervisedLearning

Generativemodels,

GenerativeAdversarial

Network(GAN)n,Neural

network,k-means,PrincipalComponentAnalysis(PCA)

Clustering,

Visualization,

AnomalyDetection,MarketSegmentation,CustomerPersona

Semi-supervisedlearning

Graphneuralnetwork(GNN),MonteCarlo,Functional

ApproximationMethod

FraudDetection,MedicalDiagnosis

II.AITECHNIQUESINMATERIALSSCIENCE

ThestrategicuseofAItechniquesinmaterialssciencehasresultedinaneweraofinventionanddiscovery,upendingestablishedapproachestomaterialdesign,development,andoptimisation.ThissectionlooksatthemanyAIapproachesusedinmaterialsscienceandhowtheyhavetransformedthespeedofmaterialsresearch.

a.MachineLearninginMaterialsScience

Machinelearning(ML)approacheshavegainedpopularityinmaterialsresearchduetotheircapacitytouncoverpatternsandinsightsfrommassivedatasetsofmaterialcharacteristics,experimentalobservations,andsimulationresults.Supportvectormachines(SVM),randomforests,andneuralnetworksareexamplesofsupervisedmachinelearningalgorithmsusedfortasksincludingpropertyprediction,classification,andregression.Bytrainingonlabelleddatasets,thesealgorithmsmaylearncomplicatedmappingsbetween

237

AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:

UnleashingthePotentialofIoT,AI,andEdgeIntelligenceE-ISBN:978-93-6252-115-6

IIPSeries,Chapter13

STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE

materialcomposition,structure,andperformance,allowingforquickscreeningofcandidatematerialswithdesiredqualities.Unsupervisedmachinelearningapproaches,suchask-meansandhierarchicalclustering,enabledata-drivenexplorationofthematerialsspace,revealinghiddenlinkagesanddiscoveringfreshmaterialcandidatesbasedonpropertysimilarities[2].

b.DeepLearningforMaterialsDiscovery

Deeplearning(DL),asubsetofMLrecognizedbytheutilizeofneuralnetworkswithvariouslayers,hasrisenascompellingdeviceforfabricrevelationandplan.Convolutionalneuralnetworks(CNNs)areespeciallywell-suitedforimage-basedmaterialscharacterization,permittingforcomputerizedponderofmicrostructures,absconds,andstagedistinguishingproofutilizingmicroscopyandspectroscopyinformation.Successiveinformationinvestigationiscarriedoututilizingrepetitiveneuralnetworks(RNNs)andlongshort-termmemory(LSTM)networks,suchastime-seriesdatafrommaterialsamalgamationformsorsuccessiveestimationsfromtests.Generativemodelssuchasgenerativeill-disposedsystems(GANs)andvariationalautoencoders(VAEs)permitforthecreationofnewmaterialswithwantedqualitiesbylearningthefundamentaldispersionoffabricinformationandincorporatingmoderntests.

c.ComputationalModellingandSimulation

Inadditiontodata-drivenapproaches,computermodellingandsimulationtechniquesarecriticalinmaterialsresearchforunderstandingthefundamentalphysicsandchemistrythatregulatematerialbehaviour.Quantummechanicalapproaches,suchasdensityfunctionaltheory(DFT)andmoleculardynamics(MD),offeratomisticinsightsintotheelectricalstructure,thermodynamiccharacteristics,andmechanicalbehaviourofmaterialsattheatomiclevel.Thesecomputationalmodels,whenintegratedwithAIapproaches,allowresearcherstospeedmaterialsdiscoverybycombiningexperimentaldata,theoreticalpredictions,andmachinelearninginsights.Furthermore,machinelearningmethodsmayhelpconstructsurrogatemodelstomimiccomputationallyintensivesimulations,allowingforquickexplorationofthematerialspaceandoptimisationofmaterialattributes.

d.IntegrationofAIwithExperimentalTechniques

TheintegrationofAImethodswithteststrategieshasdevelopedasasynergisticapproachtomaterialsinvestigate,empoweringquickeneddisclosureandoptimizationofmaterialswithupgradedexecutioncharacteristics.High-throughputexperimentation(HTE)stages,coupledwithmachinelearningcalculations,empowerquickscreeningofexpansivematerialslibrariestodistinguishpromisingcandidatesforencourageexamination.IndependentresearchfacilitiespreparedwithmechanicalframeworksandAI-drivendecision-makingcapabilitiesencourageclosed-loopexperimentation,whereinputfromtestcomesaboutisutilizedtoiterativelyrefinematerialsblendandcharacterizationforms.Additionally,AIstrategiessuchasdynamiclearningandBayesianoptimizationdirectexploratoryplanandtestdetermination,maximizingtheproductivityandviabilityofexploratoryendeavoursinmaterialsinquireabout[3].

238

AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:

UnleashingthePotentialofIoT,AI,andEdgeIntelligence

E-ISBN:978-93-6252-115-6IIPSeries,Chapter13

STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE

e.Data-DrivenMaterialsInformatics

AttheheartofAI-drivenmaterialsscienceliestheconceptofmaterialsinformatics,whichleveragesdata-drivenapproachestoextractvaluableinsightsandknowledgefromdiversesourcesofmaterialsdata.Materialsdatabasesandrepositories,enrichedwithexperimentalmeasurements,computationalsimulations,andliterature-derivedinformation,serveasinvaluableresourcesfortrainingAImodelsandvalidatingpredictions.Byintegratingdisparatesourcesofdatathroughadvanceddatafusiontechniques,materialsinformaticsenablesresearcherstouncoverhiddencorrelations,identifymaterialstrends,andacceleratethediscoveryofnewmaterialswithtailoredproperties.Furthermore,thedevelopmentofstandardizedformatsandontologiesformaterialsdatarepresentationfacilitatesinteroperabilityanddatasharing,promotingcollaborationandcollectivelearningwithinthematerialssciencecommunity.

Conclusion

ThestrategicintegrationofAItechniquesinmaterialssciencerepresentsaparadigmshiftinthewaymaterialsarediscovered,designed,andoptimized.Byharnessingthepowerofmachinelearning,deeplearning,computationalmodelling,anddata-driveninformatics,researcherscannavigatethevastlandscapeofmaterialsspacewithunprecedentedefficiencyandeffectiveness.Fromacceleratingmaterialsdiscoveryandoptimizationtoenablingautonomousexperimentationanddata-drivendecision-making,AItechniquesholdthepromiseofunlockingnewfrontiersinmaterialsscienceanddrivingtransformativeadvancementsacrossvariousdomains.Asthefieldcontinuestoevolve,interdisciplinarycollaborationandinnovativemethodologieswillbeessentialforharnessingthefullpotentialofAIinmaterialsresearchandrealizingitsimpactonsocietyandtechnology.

III.APPLICATIONSOFAIINMATERIALSSCIENCE

ThissectionpresentsacomprehensiveoverviewofthediverseapplicationsofAIinmaterialsscienceacrossvariousdomains,includingelectronics,energystorage,catalysis,biomaterials,andmore.CasestudieshighlightingsuccessfulimplementationsofAI-drivenapproachestodesignnovelmaterialswithenhancedperformancecharacteristicsarediscussed.Additionally,theroleofAIinoptimizingmaterialpropertiesforspecificapplications,suchaslightweightalloysforaerospaceapplicationsorhigh-capacityelectrodesforlithium-ionbatteries,isexaminedtoillustratetheimpactofAIonenablingtechnologicaladvancements[4].

a.MaterialsDiscoveryandDesign

OneoftheprimaryoperationsofAIinmaterialwisdomisinacceleratingtheprocessofmaterialsdiscoveryanddesign.AIways,similarasmachineliteracyanddeepliteracy,enableexperimenterstoefficientlyexplorethevastgeographyofmaterialspace,prognosticatematerialparcels,andidentifypromisingcampaignersfornewmaterialwithaskedcharacteristics.Byusinglargedatasetsofmaterialparcels,computationalsimulations,andexperimentalmeasures,AIalgorithmscanuncoverretiredpatternsandcorrelations,guidingexperimenterstowardstheconflationofnewmaterialacclimatizedforspecificoperations.Fromdesigninghigh-temperaturesuperconductorstodevelopingfeatherlight

239

AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:

UnleashingthePotentialofIoT,AI,andEdgeIntelligenceE-ISBN:978-93-6252-115-6

IIPSeries,Chapter13

STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE

blendswithsuperiormechanicalparcels,AI-drivenmaterialdiscoveryholdsthepledgeofrevolutionizingcolourfuldiligencebyenablingtherapid-firedevelopmentofadvancedmaterialwithunknownperformance.[8]

b.PropertyPredictionandOptimization

AIwaysplayapivotalpartinprognosticatingandoptimizingmaterialparcelsforawiderangeofoperations.Machineliteracyalgorithms,trainedondatasetsofmaterialparcelsandcomposition-structure-performanceconnections,candirectlyreadthebehaviourofmaterialunderdifferentconditions,easingtheselectionofmaterialwithoptimalcharacteristicsforspecificoperations.Whetherit'sprognosticatingthebandgapofsemiconductorsforelectronicbiasoroptimizingthecatalyticexertionofmaterialforrenewableenergyoperations,AI-drivenpropertyvaticinationandoptimizationempowerexperimenterstoexpeditethematerialdevelopmentprocessandachievesuperiorperformanceissues.also,theintegrationofAIwithcomputationalmodellingwaysenablesexperimenterstopretendanddissectthebehaviourofmaterialatcolourfulscales,furnishingperceptivityintotheunderpinningmechanismsgoverningmaterialparcelsandguidingrationaldesignstrategies.

c.ProcessOptimizationandControl

Inadditiontomaterialdesignandpropertyvaticination,AIwaysareemployedinoptimizingandcontrollingmaterialconflationandprocessingways.AutonomouslaboratoriesequippedwithroboticsystemsandAI-drivendecision-makingcapabilitiesenableunrestricted-circletrial,wherefeedbackfromexperimentalresultsisusedtoiterativelyupgradeconflationparametersandoptimizematerialparcels.Machineliteracyalgorithmscandissectreal-timedataaqueductsfromdetectorsandinstrumentstocoverandcontrolmanufacturingprocesses,icingthicknessandqualityinmaterialproduct.Whetherit'soptimizingtheparametersofcumulativemanufacturingprocessesorcontrollingthecompositionofmaterialduringconflation,AI-drivenprocessoptimizationandcontrolholdtheeventualitytorevisemanufacturingworkflowsandenablethescalableproductofadvancedmaterialwithacclimatizedparcels[4].

d.MaterialCharacterizationandAnalysis

AIwaysaredecreasinglybeingemployedinmaterialcharacterizationandanalysis,enablingautomatedinterpretationofexperimentaldataandbirthofpreciousperceptivityfromcomplexdatasets.Deepliteracyalgorithms,similarasconvolutionalneuralnetworks(CNNs),areemployedforimage-groundedmaterialcharacterization,easingautomatedanalysisofmicroscopyimages,spectroscopicdata,andX-raydiffractionpatterns.ByusingAI-drivenimageanalysisways,experimenterscanidentifymicrostructuralfeatures,blights,andphaseboundariesinmaterialsampleswithhighdelicacyandeffectiveness.likewise,unsupervisedliteracyalgorithmsenableclusteringandpatternrecognitioninlargedatasetsofmaterialcharacterizationdata,furnishingexperimenterswithpreciousperceptivityintomaterialbehaviourandparcels.Frommaterialimagingandspectroscopytocrystallographyanddiffractionanalysis,AI-drivenmaterialcharacterizationwaysenhanceexperimenters'capabilitiestoprizemeaningfulinformationfromexperimentaldataandacceleratematerialexplorationanddevelopment[5].

240

AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:

UnleashingthePotentialofIoT,AI,andEdgeIntelligence

E-ISBN:978-93-6252-115-6IIPSeries,Chapter13

STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE

e.DesignofFunctionalMaterials

AIwaysarenecessaryinthedesignandoptimizationoffunctionalmaterialforawiderangeofoperations,includingelectronics,energystorehouse,catalysis,andbiomaterials.ByusingAI-drivenapproaches,experimenterscanconformthecomposition,structure,andparcelsofmaterialtoachieveaskedfunctionalitiesandperformancecharacteristics.Forillustration,inthefieldofelectronics,AIalgorithmsaidinthedesignofsemiconductormaterialwithoptimizedbandgaps,carriermobilities,andelectricalconductivitiesforcolourfuldeviceoperations.Inenergystorehouse,AI-drivenmaterialdesignfacilitatesthedevelopmentofhigh-capacityelectrodes,electrolytes,andinterfacesforcoming-generationbatteriesandsupercapacitors.also,AIwaysenablethedesignofcatalystmaterialwithenhancedexertion,selectivity,andstabilityforcatalyticconversionprocessesinrenewableenergyandenvironmentalremediationoperations.Fromdesigningsmartmaterialforseeingandactuationtoengineeringbiocompatiblematerialformedicalimplantsandmedicinedeliverysystems,AI-drivenmaterialdesignopensupnewpossibilitiesforinventionandadvancementacrossdifferentdisciplines[5-6].

Conclusion

TheoperationsofAIinmaterialwisdomarevastandmultifaceted,gaugingmaterialdiscovery,propertyvaticination,processoptimization,characterization,andfunctionalmaterialdesign.ByemployingthepowerofAIwayssimilarasmachineliteracy,deepliteracy,andcomputationalmodelling,experimenterscanacceleratethepaceofmaterialexplorationanddevelopment,enablingthecreationofadvancedmaterialwithacclimatizedparcelsandenhancedperformancecharacteristics.Fromacceleratingmaterialdiscoveryanddesigntooptimizingmanufacturingprocessesanddevelopingfunctionalmaterialfordifferentoperations,AI-drivenapproachesholdthepledgeofrevolutionizingcolourfuldiligenceanddrivingtechnologicalinvention.AsAIcontinuestoevolveandadvance,interdisciplinarycollaborationandinnovativemethodologieswillbeessentialforemployingitsfulleventualityinmaterialwisdomandrealizingitstransformativeimpactonsocietyandtechnology.

IV.CHALLENGESANDOPPORTUNITIES

DespitethesubstantialprogressmadeinintegratingAIintomaterialsresearch,variousdifficultiesandpossibilitiesstillexist.Thissectionexaminessignificantproblemssuchasdatascarcity,AImodelinterpretability,knowledgetransferability,andethicalimplicationsforAI-drivenmaterialsdesign.Theseissuesareaddressedbystrategiessuchasdataaugmentationtechniques,uncertaintyquantificationmethodologies,andmodelexplainabilityapproaches.Furthermore,growingprospectsformultidisciplinarycooperation,opendatasharing,andthecreationofAI-poweredmaterialsdatabasesareinvestigatedinordertopromoteinnovationandspeedtheuseofAIinmaterialsresearch.WhiletheincorporationofArtificialIntelligence(AI)techniquesintomaterialsscienceprovidesenormousprospectsforinnovationanddiscovery,italsoposesanumberofproblemsthatmustbeovercomeinordertofullyrealiseitspromise.

241

AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:

UnleashingthePotentialofIoT,AI,andEdgeIntelligence

E-ISBN:978-93-6252-115-6IIPSeries,Chapter13

STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE

a.DataScarcityandQuality

OneoftheprimarychallengesinAI-drivenmaterialsscienceistheavailabilityandqualityofdata.Materialsdatasetsareoftenlimitedinsizeandscope,makingitchallengingtotrainaccurateandrobustAImodels,particularlyforrareornichematerials.Moreover,thequalityofmaterialsdatacanvarysignificantly,leadingtobiasesandinaccuraciesinAIpredictions.Addressingdatascarcityandimprovingdataqualitythroughstandardizeddataformats,opendatarepositories,andcollaborativedata-sharinginitiativespresentsanopportunitytoenhancetheeffectivenessandreliabilityofAI-drivenmaterialsresearch.

b.ModelInterpretabilityandTrustworthiness

AnotherchallengeinAI-drivenmaterialsscienceistheinterpretabilityandtrustworthinessofAImodels.ComplexAIalgorithmssuchasdeepneuralnetworksareoftenregardedas"blackboxes,"makingitdifficulttounderstandtheunderlyingreasoningbehindmodelpredictions.ThislackofinterpretabilitycanhindertheadoptionofAI-drivenapproachesinmaterialsresearch,asresearchersmaybehesitanttotrustandrelyonmodelstheycannotunderstand.DevelopingtechniquesforexplainingandvisualizingAImodeldecisions,aswellasquantifyingmodeluncertaintyandreliability,presentsanopportunitytoenhancetransparencyandtrustworthinessinAI-drivenmaterialsscience[7].

c.TransferabilityofLearnedKnowledge

AImodelstrainedonspecificdatasetsormaterialssystemsmaystruggletogeneralizetonewmaterialsorexperimentalconditions,limitingtheirapplicabilityandscalability.ThislackoftransferabilityposesachallengeintranslatingAI-drivenresearchfindingsintopracticalapplicationsacrossdiversematerialsdomains.DevelopingtransferlearningtechniquesanddomainadaptationmethodsthatenableAImodelstoleverageknowledgelearnedfromonematerialssystemtoinformpredictionsinanotherpresentsanopportunitytoenhancetherobustnessandgeneralizationcapabilitiesofAI-drivenmaterialsresearch.

d.EthicalandSocietalImplications

AsAI-drivenmaterialsscienceadvances,itraisesimportantethicalandsocietalconsiderationsthatmustbeaddressed.Questionssurroundingdataprivacy,intellectualpropertyrights,andalgorithmicbiasrequirecarefulconsiderationtoensureresponsibleandequitabledeploymentofAItechnologiesinmaterialsresearch.Moreover,thepotentialimpactofAI-drivenmaterialsdiscoveriesonsociety,economy,andtheenvironmentnecessitatesethicalframeworksandregulatoryguidelinestoguideresponsibleinnovationanddecision-making.EngagingstakeholdersfromdiversebackgroundsanddisciplinesindiscussionssurroundingtheethicalandsocietalimplicationsofAI-drivenmaterialsresearchpresentsanopportunitytofostercollaboration,transparency,andaccountabilityinthefield[7-8].

e.InterdisciplinaryCollaborationandEducation

OneofthekeyopportunitiesinAI-drivenmaterialsscienceliesinfosteringinterdisciplinarycollaborationandeducation.Materialsscienceisinherentlyinterdisciplinary,

242

AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:

UnleashingthePotentialofIoT,AI,andEdgeIntelligence

E-ISBN:978-93-6252-115-6IIPSeries,Chapter13

STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE

drawinguponexpertisefromfieldssuchaschemistry,physics,engineering,andcomputerscience.Bypromotingcollaborationbetweenmaterialsscientists,datascientists,computationalresearchers,anddomainexperts,AI-drivenmaterialsresearchcanbenefitfromdiverseperspectivesandmethodologies,leadingtomoreimpactfulandinnovativeoutcomes.Moreover,integratingAIandmaterialsscienceeducationcurriculatotrainthenextgenerationofresearchersininterdisciplinaryskillsandapproachespresentsanopportunitytopreparefutureleadersinthefieldtoharnessthepowerofAIformaterialsdiscoveryandinnovation.

Conclusion

Inconclusion,theintegrationofAItechniquesinmaterialssciencepresentsbothchallengesandopportunitiesforadvancingresearchandinnovation.Addressingchallengesrelatedtodatascarcity,modelinterpretability,transferabilityoflearnedknowledge,andethicalconsiderationsisessentialtorealizingthefullpotentialofAI-drivenmaterialsresearch.However,thesechallengesalsopresentopportunitiesfordevelopinginnovativesolutionsandstrategiesthatenhancetheeffectiveness,reliability,andsocietalimpactofAI-drivenmaterialsscience.Byfosteringinterdisciplinarycollaboration,promotingtransparencyandaccountability,andaddressingethicalandsocietalimplications,theresearchcommunitycanleverageAItoacceleratematerialsdiscovery,optimizematerialproperties,anddrivetransformativeadvancementsacrossdiversedomains.

V.STRATEGICFRAMEWORKFORAI-ENABLEDMATERIALSDESIGN

ToharnessthefullpotentialofArtificialIntelligence(AI)inmaterialsscience,astrategicframeworkisessentialtoguidetheintegrationofAItechniquesintothematerialsdesignprocesseffectively.ThissectionproposesacomprehensivestrategicframeworkthatoutlineskeystepsandconsiderationsforleveragingAItoenhancematerialsdesign,optimization,andinnovation.

Figure1:FourActionLoopstorespondtoInsights

a.DataCollectionandCuration

ThefirststepinthestrategicframeworkforAI-enabledmaterialsdesignistoestablishrobustdatacollectionandcurationprocesses.Thisinvolvesassemblingdiverse

243

AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:

UnleashingthePotentialofIoT,AI,andEdgeIntelligence

E-ISBN:978-93-6252-115-6IIPSeries,Chapter13

STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE

datasetsofmaterialsproperties,experimentalmeasurements,computationalsimulations,andliterature-derivedinformation.Emphasisshouldbeplacedoncollectinghigh-qualitydatafromreliablesourcesandensuringproperdocumentationandannotationtofacilitatedataintegrationandanalysis.Moreover,effortsshouldbemadetoaddressdatascarcitybyleveragingdataaugmentationtechniques,collaboratingwithexperimentaliststogeneratenewdata,andengaginginopendata-sharinginitiativestoexpandtheavailabilityofmaterialsdataforAI-drivenresearch.

b.ModelDevelopmentandValidation

Oncethedataiscollectedandcurated,thenextstepistodevelopandvalidateAImodelsformaterialsdesignandoptimization.ThisinvolvesselectingappropriateAIalgorithms,suchasmachinelearning,deeplearning,andcomputationalmodellingtechniques,basedonthespecificmaterialspropertiesandapplicationsofinterest.AImodelsshouldb

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論