




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:
UnleashingthePotentialofIoT,AI,andEdgeIntelligence
E-ISBN:978-93-6252-115-6IIPSeries,Chapter13
STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE
235
STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE
Abstract
TheintegrationofArtificialIntelligence(AI)inmaterialssciencehasemergedasatransformativeparadigm,revolutionizingthedesign,development,andoptimizationofmaterialswithenhancedperformancecharacteristics.ThispaperexploresthestrategicintegrationofAItechniquessuchasmachinelearning,deeplearning,andcomputationalmodellinginmaterialssciencetoacceleratethediscoveryprocess,optimizematerialproperties,anddriveinnovation.ByleveragingAI-drivenapproaches,researcherscanovercometraditionallimitationsinmaterialsdevelopment,leadingtobreakthroughsinvariousfieldsrangingfromelectronicsandenergystoragetohealthcareandbeyond.Thispaperexaminesthecurrentstate-of-the-artAImethodologiesinmaterialsscience,discusseskeychallengesandopportunities,andproposesstrategicframeworksforharnessingAItounlockthefullpotentialofadvancedmaterials.
Keywords:ArtificialIntelligence,MaterialsScience,MachineLearning,DeepLearning,ComputationalModelling,Optimization,PerformanceEnhancement.
Authors
AdityaSingh
EEEDepartment
MaharajaAgrasenInstituteofTechnology
NewDelhi,India
adityasingh13148@
DeepanshiAgarwal
AIDSDepartment
MaharajaAgrasenInstituteofTechnology
NewDelhi,India
deepanshi2agarwal@
Ms.MonikaBhardwaj
EEEDepartment
MaharajaAgrasenInstituteofTechnology
NewDelhi,India
monikagupta.eee@mait.ac.in
Dr.Laxya
AssistantProfessor
DepartmentofElectricaland
ElecteonicsEngineering,MaharajaAgrasenInstituteofTechnology,
NewDelhi,India.
236
AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:
UnleashingthePotentialofIoT,AI,andEdgeIntelligence
E-ISBN:978-93-6252-115-6IIPSeries,Chapter13
STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE
I.INTRODUCTION
Materialsscienceplaysacrucialroleinadvancingvariousindustriesbyenablingthedevelopmentofnovelmaterialswithtailoredpropertiestomeetspecificapplicationrequirements.However,thetraditionaltrial-and-errorapproachtomaterialsdiscoveryandoptimizationistime-consuming,resource-intensive,andoftenlimitedbythevastdesignspaceofmaterials.Inrecentyears,theintegrationofArtificialIntelligence(AI)techniqueshasrevolutionizedthematerialssciencelandscape,offeringnewavenuesforacceleratingthediscoveryprocess,optimizingmaterialproperties,andoptimizingmaterialproperties,andachievingunprecedentedlevelsofperformance.ThissectionprovidesanoverviewofthestrategicintegrationofAIinmaterialsscience,highlightingitspotentialtodriveinnovationandaddresslongstandingchallenges[1].
Table1:TypesofLearning
Type
MLMethods
Application
Supervisedlearning
LinearRegression.LogisticRegression.DecisionTree.
KNearestNeighbours.RandomForest.
NaiveBayes
Bioinformatics,
speechrecognition,spamdetection,
objectrecognitionforthevision
UnsupervisedLearning
Generativemodels,
GenerativeAdversarial
Network(GAN)n,Neural
network,k-means,PrincipalComponentAnalysis(PCA)
Clustering,
Visualization,
AnomalyDetection,MarketSegmentation,CustomerPersona
Semi-supervisedlearning
Graphneuralnetwork(GNN),MonteCarlo,Functional
ApproximationMethod
FraudDetection,MedicalDiagnosis
II.AITECHNIQUESINMATERIALSSCIENCE
ThestrategicuseofAItechniquesinmaterialssciencehasresultedinaneweraofinventionanddiscovery,upendingestablishedapproachestomaterialdesign,development,andoptimisation.ThissectionlooksatthemanyAIapproachesusedinmaterialsscienceandhowtheyhavetransformedthespeedofmaterialsresearch.
a.MachineLearninginMaterialsScience
Machinelearning(ML)approacheshavegainedpopularityinmaterialsresearchduetotheircapacitytouncoverpatternsandinsightsfrommassivedatasetsofmaterialcharacteristics,experimentalobservations,andsimulationresults.Supportvectormachines(SVM),randomforests,andneuralnetworksareexamplesofsupervisedmachinelearningalgorithmsusedfortasksincludingpropertyprediction,classification,andregression.Bytrainingonlabelleddatasets,thesealgorithmsmaylearncomplicatedmappingsbetween
237
AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:
UnleashingthePotentialofIoT,AI,andEdgeIntelligenceE-ISBN:978-93-6252-115-6
IIPSeries,Chapter13
STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE
materialcomposition,structure,andperformance,allowingforquickscreeningofcandidatematerialswithdesiredqualities.Unsupervisedmachinelearningapproaches,suchask-meansandhierarchicalclustering,enabledata-drivenexplorationofthematerialsspace,revealinghiddenlinkagesanddiscoveringfreshmaterialcandidatesbasedonpropertysimilarities[2].
b.DeepLearningforMaterialsDiscovery
Deeplearning(DL),asubsetofMLrecognizedbytheutilizeofneuralnetworkswithvariouslayers,hasrisenascompellingdeviceforfabricrevelationandplan.Convolutionalneuralnetworks(CNNs)areespeciallywell-suitedforimage-basedmaterialscharacterization,permittingforcomputerizedponderofmicrostructures,absconds,andstagedistinguishingproofutilizingmicroscopyandspectroscopyinformation.Successiveinformationinvestigationiscarriedoututilizingrepetitiveneuralnetworks(RNNs)andlongshort-termmemory(LSTM)networks,suchastime-seriesdatafrommaterialsamalgamationformsorsuccessiveestimationsfromtests.Generativemodelssuchasgenerativeill-disposedsystems(GANs)andvariationalautoencoders(VAEs)permitforthecreationofnewmaterialswithwantedqualitiesbylearningthefundamentaldispersionoffabricinformationandincorporatingmoderntests.
c.ComputationalModellingandSimulation
Inadditiontodata-drivenapproaches,computermodellingandsimulationtechniquesarecriticalinmaterialsresearchforunderstandingthefundamentalphysicsandchemistrythatregulatematerialbehaviour.Quantummechanicalapproaches,suchasdensityfunctionaltheory(DFT)andmoleculardynamics(MD),offeratomisticinsightsintotheelectricalstructure,thermodynamiccharacteristics,andmechanicalbehaviourofmaterialsattheatomiclevel.Thesecomputationalmodels,whenintegratedwithAIapproaches,allowresearcherstospeedmaterialsdiscoverybycombiningexperimentaldata,theoreticalpredictions,andmachinelearninginsights.Furthermore,machinelearningmethodsmayhelpconstructsurrogatemodelstomimiccomputationallyintensivesimulations,allowingforquickexplorationofthematerialspaceandoptimisationofmaterialattributes.
d.IntegrationofAIwithExperimentalTechniques
TheintegrationofAImethodswithteststrategieshasdevelopedasasynergisticapproachtomaterialsinvestigate,empoweringquickeneddisclosureandoptimizationofmaterialswithupgradedexecutioncharacteristics.High-throughputexperimentation(HTE)stages,coupledwithmachinelearningcalculations,empowerquickscreeningofexpansivematerialslibrariestodistinguishpromisingcandidatesforencourageexamination.IndependentresearchfacilitiespreparedwithmechanicalframeworksandAI-drivendecision-makingcapabilitiesencourageclosed-loopexperimentation,whereinputfromtestcomesaboutisutilizedtoiterativelyrefinematerialsblendandcharacterizationforms.Additionally,AIstrategiessuchasdynamiclearningandBayesianoptimizationdirectexploratoryplanandtestdetermination,maximizingtheproductivityandviabilityofexploratoryendeavoursinmaterialsinquireabout[3].
238
AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:
UnleashingthePotentialofIoT,AI,andEdgeIntelligence
E-ISBN:978-93-6252-115-6IIPSeries,Chapter13
STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE
e.Data-DrivenMaterialsInformatics
AttheheartofAI-drivenmaterialsscienceliestheconceptofmaterialsinformatics,whichleveragesdata-drivenapproachestoextractvaluableinsightsandknowledgefromdiversesourcesofmaterialsdata.Materialsdatabasesandrepositories,enrichedwithexperimentalmeasurements,computationalsimulations,andliterature-derivedinformation,serveasinvaluableresourcesfortrainingAImodelsandvalidatingpredictions.Byintegratingdisparatesourcesofdatathroughadvanceddatafusiontechniques,materialsinformaticsenablesresearcherstouncoverhiddencorrelations,identifymaterialstrends,andacceleratethediscoveryofnewmaterialswithtailoredproperties.Furthermore,thedevelopmentofstandardizedformatsandontologiesformaterialsdatarepresentationfacilitatesinteroperabilityanddatasharing,promotingcollaborationandcollectivelearningwithinthematerialssciencecommunity.
Conclusion
ThestrategicintegrationofAItechniquesinmaterialssciencerepresentsaparadigmshiftinthewaymaterialsarediscovered,designed,andoptimized.Byharnessingthepowerofmachinelearning,deeplearning,computationalmodelling,anddata-driveninformatics,researcherscannavigatethevastlandscapeofmaterialsspacewithunprecedentedefficiencyandeffectiveness.Fromacceleratingmaterialsdiscoveryandoptimizationtoenablingautonomousexperimentationanddata-drivendecision-making,AItechniquesholdthepromiseofunlockingnewfrontiersinmaterialsscienceanddrivingtransformativeadvancementsacrossvariousdomains.Asthefieldcontinuestoevolve,interdisciplinarycollaborationandinnovativemethodologieswillbeessentialforharnessingthefullpotentialofAIinmaterialsresearchandrealizingitsimpactonsocietyandtechnology.
III.APPLICATIONSOFAIINMATERIALSSCIENCE
ThissectionpresentsacomprehensiveoverviewofthediverseapplicationsofAIinmaterialsscienceacrossvariousdomains,includingelectronics,energystorage,catalysis,biomaterials,andmore.CasestudieshighlightingsuccessfulimplementationsofAI-drivenapproachestodesignnovelmaterialswithenhancedperformancecharacteristicsarediscussed.Additionally,theroleofAIinoptimizingmaterialpropertiesforspecificapplications,suchaslightweightalloysforaerospaceapplicationsorhigh-capacityelectrodesforlithium-ionbatteries,isexaminedtoillustratetheimpactofAIonenablingtechnologicaladvancements[4].
a.MaterialsDiscoveryandDesign
OneoftheprimaryoperationsofAIinmaterialwisdomisinacceleratingtheprocessofmaterialsdiscoveryanddesign.AIways,similarasmachineliteracyanddeepliteracy,enableexperimenterstoefficientlyexplorethevastgeographyofmaterialspace,prognosticatematerialparcels,andidentifypromisingcampaignersfornewmaterialwithaskedcharacteristics.Byusinglargedatasetsofmaterialparcels,computationalsimulations,andexperimentalmeasures,AIalgorithmscanuncoverretiredpatternsandcorrelations,guidingexperimenterstowardstheconflationofnewmaterialacclimatizedforspecificoperations.Fromdesigninghigh-temperaturesuperconductorstodevelopingfeatherlight
239
AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:
UnleashingthePotentialofIoT,AI,andEdgeIntelligenceE-ISBN:978-93-6252-115-6
IIPSeries,Chapter13
STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE
blendswithsuperiormechanicalparcels,AI-drivenmaterialdiscoveryholdsthepledgeofrevolutionizingcolourfuldiligencebyenablingtherapid-firedevelopmentofadvancedmaterialwithunknownperformance.[8]
b.PropertyPredictionandOptimization
AIwaysplayapivotalpartinprognosticatingandoptimizingmaterialparcelsforawiderangeofoperations.Machineliteracyalgorithms,trainedondatasetsofmaterialparcelsandcomposition-structure-performanceconnections,candirectlyreadthebehaviourofmaterialunderdifferentconditions,easingtheselectionofmaterialwithoptimalcharacteristicsforspecificoperations.Whetherit'sprognosticatingthebandgapofsemiconductorsforelectronicbiasoroptimizingthecatalyticexertionofmaterialforrenewableenergyoperations,AI-drivenpropertyvaticinationandoptimizationempowerexperimenterstoexpeditethematerialdevelopmentprocessandachievesuperiorperformanceissues.also,theintegrationofAIwithcomputationalmodellingwaysenablesexperimenterstopretendanddissectthebehaviourofmaterialatcolourfulscales,furnishingperceptivityintotheunderpinningmechanismsgoverningmaterialparcelsandguidingrationaldesignstrategies.
c.ProcessOptimizationandControl
Inadditiontomaterialdesignandpropertyvaticination,AIwaysareemployedinoptimizingandcontrollingmaterialconflationandprocessingways.AutonomouslaboratoriesequippedwithroboticsystemsandAI-drivendecision-makingcapabilitiesenableunrestricted-circletrial,wherefeedbackfromexperimentalresultsisusedtoiterativelyupgradeconflationparametersandoptimizematerialparcels.Machineliteracyalgorithmscandissectreal-timedataaqueductsfromdetectorsandinstrumentstocoverandcontrolmanufacturingprocesses,icingthicknessandqualityinmaterialproduct.Whetherit'soptimizingtheparametersofcumulativemanufacturingprocessesorcontrollingthecompositionofmaterialduringconflation,AI-drivenprocessoptimizationandcontrolholdtheeventualitytorevisemanufacturingworkflowsandenablethescalableproductofadvancedmaterialwithacclimatizedparcels[4].
d.MaterialCharacterizationandAnalysis
AIwaysaredecreasinglybeingemployedinmaterialcharacterizationandanalysis,enablingautomatedinterpretationofexperimentaldataandbirthofpreciousperceptivityfromcomplexdatasets.Deepliteracyalgorithms,similarasconvolutionalneuralnetworks(CNNs),areemployedforimage-groundedmaterialcharacterization,easingautomatedanalysisofmicroscopyimages,spectroscopicdata,andX-raydiffractionpatterns.ByusingAI-drivenimageanalysisways,experimenterscanidentifymicrostructuralfeatures,blights,andphaseboundariesinmaterialsampleswithhighdelicacyandeffectiveness.likewise,unsupervisedliteracyalgorithmsenableclusteringandpatternrecognitioninlargedatasetsofmaterialcharacterizationdata,furnishingexperimenterswithpreciousperceptivityintomaterialbehaviourandparcels.Frommaterialimagingandspectroscopytocrystallographyanddiffractionanalysis,AI-drivenmaterialcharacterizationwaysenhanceexperimenters'capabilitiestoprizemeaningfulinformationfromexperimentaldataandacceleratematerialexplorationanddevelopment[5].
240
AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:
UnleashingthePotentialofIoT,AI,andEdgeIntelligence
E-ISBN:978-93-6252-115-6IIPSeries,Chapter13
STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE
e.DesignofFunctionalMaterials
AIwaysarenecessaryinthedesignandoptimizationoffunctionalmaterialforawiderangeofoperations,includingelectronics,energystorehouse,catalysis,andbiomaterials.ByusingAI-drivenapproaches,experimenterscanconformthecomposition,structure,andparcelsofmaterialtoachieveaskedfunctionalitiesandperformancecharacteristics.Forillustration,inthefieldofelectronics,AIalgorithmsaidinthedesignofsemiconductormaterialwithoptimizedbandgaps,carriermobilities,andelectricalconductivitiesforcolourfuldeviceoperations.Inenergystorehouse,AI-drivenmaterialdesignfacilitatesthedevelopmentofhigh-capacityelectrodes,electrolytes,andinterfacesforcoming-generationbatteriesandsupercapacitors.also,AIwaysenablethedesignofcatalystmaterialwithenhancedexertion,selectivity,andstabilityforcatalyticconversionprocessesinrenewableenergyandenvironmentalremediationoperations.Fromdesigningsmartmaterialforseeingandactuationtoengineeringbiocompatiblematerialformedicalimplantsandmedicinedeliverysystems,AI-drivenmaterialdesignopensupnewpossibilitiesforinventionandadvancementacrossdifferentdisciplines[5-6].
Conclusion
TheoperationsofAIinmaterialwisdomarevastandmultifaceted,gaugingmaterialdiscovery,propertyvaticination,processoptimization,characterization,andfunctionalmaterialdesign.ByemployingthepowerofAIwayssimilarasmachineliteracy,deepliteracy,andcomputationalmodelling,experimenterscanacceleratethepaceofmaterialexplorationanddevelopment,enablingthecreationofadvancedmaterialwithacclimatizedparcelsandenhancedperformancecharacteristics.Fromacceleratingmaterialdiscoveryanddesigntooptimizingmanufacturingprocessesanddevelopingfunctionalmaterialfordifferentoperations,AI-drivenapproachesholdthepledgeofrevolutionizingcolourfuldiligenceanddrivingtechnologicalinvention.AsAIcontinuestoevolveandadvance,interdisciplinarycollaborationandinnovativemethodologieswillbeessentialforemployingitsfulleventualityinmaterialwisdomandrealizingitstransformativeimpactonsocietyandtechnology.
IV.CHALLENGESANDOPPORTUNITIES
DespitethesubstantialprogressmadeinintegratingAIintomaterialsresearch,variousdifficultiesandpossibilitiesstillexist.Thissectionexaminessignificantproblemssuchasdatascarcity,AImodelinterpretability,knowledgetransferability,andethicalimplicationsforAI-drivenmaterialsdesign.Theseissuesareaddressedbystrategiessuchasdataaugmentationtechniques,uncertaintyquantificationmethodologies,andmodelexplainabilityapproaches.Furthermore,growingprospectsformultidisciplinarycooperation,opendatasharing,andthecreationofAI-poweredmaterialsdatabasesareinvestigatedinordertopromoteinnovationandspeedtheuseofAIinmaterialsresearch.WhiletheincorporationofArtificialIntelligence(AI)techniquesintomaterialsscienceprovidesenormousprospectsforinnovationanddiscovery,italsoposesanumberofproblemsthatmustbeovercomeinordertofullyrealiseitspromise.
241
AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:
UnleashingthePotentialofIoT,AI,andEdgeIntelligence
E-ISBN:978-93-6252-115-6IIPSeries,Chapter13
STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE
a.DataScarcityandQuality
OneoftheprimarychallengesinAI-drivenmaterialsscienceistheavailabilityandqualityofdata.Materialsdatasetsareoftenlimitedinsizeandscope,makingitchallengingtotrainaccurateandrobustAImodels,particularlyforrareornichematerials.Moreover,thequalityofmaterialsdatacanvarysignificantly,leadingtobiasesandinaccuraciesinAIpredictions.Addressingdatascarcityandimprovingdataqualitythroughstandardizeddataformats,opendatarepositories,andcollaborativedata-sharinginitiativespresentsanopportunitytoenhancetheeffectivenessandreliabilityofAI-drivenmaterialsresearch.
b.ModelInterpretabilityandTrustworthiness
AnotherchallengeinAI-drivenmaterialsscienceistheinterpretabilityandtrustworthinessofAImodels.ComplexAIalgorithmssuchasdeepneuralnetworksareoftenregardedas"blackboxes,"makingitdifficulttounderstandtheunderlyingreasoningbehindmodelpredictions.ThislackofinterpretabilitycanhindertheadoptionofAI-drivenapproachesinmaterialsresearch,asresearchersmaybehesitanttotrustandrelyonmodelstheycannotunderstand.DevelopingtechniquesforexplainingandvisualizingAImodeldecisions,aswellasquantifyingmodeluncertaintyandreliability,presentsanopportunitytoenhancetransparencyandtrustworthinessinAI-drivenmaterialsscience[7].
c.TransferabilityofLearnedKnowledge
AImodelstrainedonspecificdatasetsormaterialssystemsmaystruggletogeneralizetonewmaterialsorexperimentalconditions,limitingtheirapplicabilityandscalability.ThislackoftransferabilityposesachallengeintranslatingAI-drivenresearchfindingsintopracticalapplicationsacrossdiversematerialsdomains.DevelopingtransferlearningtechniquesanddomainadaptationmethodsthatenableAImodelstoleverageknowledgelearnedfromonematerialssystemtoinformpredictionsinanotherpresentsanopportunitytoenhancetherobustnessandgeneralizationcapabilitiesofAI-drivenmaterialsresearch.
d.EthicalandSocietalImplications
AsAI-drivenmaterialsscienceadvances,itraisesimportantethicalandsocietalconsiderationsthatmustbeaddressed.Questionssurroundingdataprivacy,intellectualpropertyrights,andalgorithmicbiasrequirecarefulconsiderationtoensureresponsibleandequitabledeploymentofAItechnologiesinmaterialsresearch.Moreover,thepotentialimpactofAI-drivenmaterialsdiscoveriesonsociety,economy,andtheenvironmentnecessitatesethicalframeworksandregulatoryguidelinestoguideresponsibleinnovationanddecision-making.EngagingstakeholdersfromdiversebackgroundsanddisciplinesindiscussionssurroundingtheethicalandsocietalimplicationsofAI-drivenmaterialsresearchpresentsanopportunitytofostercollaboration,transparency,andaccountabilityinthefield[7-8].
e.InterdisciplinaryCollaborationandEducation
OneofthekeyopportunitiesinAI-drivenmaterialsscienceliesinfosteringinterdisciplinarycollaborationandeducation.Materialsscienceisinherentlyinterdisciplinary,
242
AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:
UnleashingthePotentialofIoT,AI,andEdgeIntelligence
E-ISBN:978-93-6252-115-6IIPSeries,Chapter13
STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE
drawinguponexpertisefromfieldssuchaschemistry,physics,engineering,andcomputerscience.Bypromotingcollaborationbetweenmaterialsscientists,datascientists,computationalresearchers,anddomainexperts,AI-drivenmaterialsresearchcanbenefitfromdiverseperspectivesandmethodologies,leadingtomoreimpactfulandinnovativeoutcomes.Moreover,integratingAIandmaterialsscienceeducationcurriculatotrainthenextgenerationofresearchersininterdisciplinaryskillsandapproachespresentsanopportunitytopreparefutureleadersinthefieldtoharnessthepowerofAIformaterialsdiscoveryandinnovation.
Conclusion
Inconclusion,theintegrationofAItechniquesinmaterialssciencepresentsbothchallengesandopportunitiesforadvancingresearchandinnovation.Addressingchallengesrelatedtodatascarcity,modelinterpretability,transferabilityoflearnedknowledge,andethicalconsiderationsisessentialtorealizingthefullpotentialofAI-drivenmaterialsresearch.However,thesechallengesalsopresentopportunitiesfordevelopinginnovativesolutionsandstrategiesthatenhancetheeffectiveness,reliability,andsocietalimpactofAI-drivenmaterialsscience.Byfosteringinterdisciplinarycollaboration,promotingtransparencyandaccountability,andaddressingethicalandsocietalimplications,theresearchcommunitycanleverageAItoacceleratematerialsdiscovery,optimizematerialproperties,anddrivetransformativeadvancementsacrossdiversedomains.
V.STRATEGICFRAMEWORKFORAI-ENABLEDMATERIALSDESIGN
ToharnessthefullpotentialofArtificialIntelligence(AI)inmaterialsscience,astrategicframeworkisessentialtoguidetheintegrationofAItechniquesintothematerialsdesignprocesseffectively.ThissectionproposesacomprehensivestrategicframeworkthatoutlineskeystepsandconsiderationsforleveragingAItoenhancematerialsdesign,optimization,andinnovation.
Figure1:FourActionLoopstorespondtoInsights
a.DataCollectionandCuration
ThefirststepinthestrategicframeworkforAI-enabledmaterialsdesignistoestablishrobustdatacollectionandcurationprocesses.Thisinvolvesassemblingdiverse
243
AdvancingInnovationinSmartSystems,Energy,Materials,andManufacturing:
UnleashingthePotentialofIoT,AI,andEdgeIntelligence
E-ISBN:978-93-6252-115-6IIPSeries,Chapter13
STRATEGICINTEGRATIONOFAIINMATERIALSSCIENCEFORENHANCEDPERFORMANCE
datasetsofmaterialsproperties,experimentalmeasurements,computationalsimulations,andliterature-derivedinformation.Emphasisshouldbeplacedoncollectinghigh-qualitydatafromreliablesourcesandensuringproperdocumentationandannotationtofacilitatedataintegrationandanalysis.Moreover,effortsshouldbemadetoaddressdatascarcitybyleveragingdataaugmentationtechniques,collaboratingwithexperimentaliststogeneratenewdata,andengaginginopendata-sharinginitiativestoexpandtheavailabilityofmaterialsdataforAI-drivenresearch.
b.ModelDevelopmentandValidation
Oncethedataiscollectedandcurated,thenextstepistodevelopandvalidateAImodelsformaterialsdesignandoptimization.ThisinvolvesselectingappropriateAIalgorithms,suchasmachinelearning,deeplearning,andcomputationalmodellingtechniques,basedonthespecificmaterialspropertiesandapplicationsofinterest.AImodelsshouldb
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財務(wù)風(fēng)險預(yù)警與應(yīng)急預(yù)案制定合同
- 城市綠地承包經(jīng)營管理長期合同
- 小屁孩日記讀后感(15篇)
- 信息系統(tǒng)監(jiān)理師考生心得體會試題及答案
- 教師2025本年度思想工作總結(jié)(12篇)
- 生產(chǎn)部合同工人工資計算方案(完整版)
- 試題及答案互聯(lián)網(wǎng)營銷策略應(yīng)用案例分析
- 農(nóng)村智能農(nóng)業(yè)遙感技術(shù)應(yīng)用合同書
- 酒店行業(yè)客戶關(guān)系管理測試題
- 破解2025年軟件測試考試技巧試題及答案
- 學(xué)習(xí)解讀《執(zhí)業(yè)獸醫(yī)和鄉(xiāng)村獸醫(yī)管理辦法》課件
- 室內(nèi)裝飾不銹鋼技術(shù)交底
- 1.3.1動量守恒定律課件(共13張PPT)
- 白黑白裝飾畫欣賞黑白裝飾畫的特點黑白裝飾畫的表現(xiàn)形式黑白裝飾 bb
- DB36_T 420-2019 江西省工業(yè)企業(yè)主要產(chǎn)品用水定額(高清無水印-可復(fù)制)
- TCECS 850-2021 住宅廚房空氣污染控制通風(fēng)設(shè)計標(biāo)準(zhǔn)
- 調(diào)度指揮與統(tǒng)計分析課程教學(xué)設(shè)計
- GB∕T 25119-2021 軌道交通 機(jī)車車輛電子裝置
- 支氣管分段亞段及及支氣管鏡檢查
- 提升機(jī)制動閘瓦間隙測控裝置說明書
- 初中音樂課件童年
評論
0/150
提交評論