2024屆山東省德州市武城縣市級名校中考數學押題試卷含解析_第1頁
2024屆山東省德州市武城縣市級名校中考數學押題試卷含解析_第2頁
2024屆山東省德州市武城縣市級名校中考數學押題試卷含解析_第3頁
2024屆山東省德州市武城縣市級名校中考數學押題試卷含解析_第4頁
2024屆山東省德州市武城縣市級名校中考數學押題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省德州市武城縣市級名校中考數學押題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.對于任意實數k,關于x的方程的根的情況為A.有兩個相等的實數根 B.沒有實數根C.有兩個不相等的實數根 D.無法確定2.一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球則兩次摸到的球的顏色不同的概率為()A. B. C. D.3.如圖,△ABC內接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.54.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形5.如果一組數據1、2、x、5、6的眾數是6,則這組數據的中位數是()A.1 B.2 C.5 D.66.的倒數是()A. B.3 C. D.7.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數互為相反數,那么圖中的值是().A. B. C. D.8.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.9.如圖圖形中,是中心對稱圖形的是()A. B. C. D.10.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數是()A.50° B.60° C.70° D.80°二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:_______________.12.長、寬分別為a、b的矩形,它的周長為14,面積為10,則a2b+ab2的值為_____.13.若關于的一元二次方程有兩個不相等的實數根,則的取值范圍為__________.14.若m2﹣2m﹣1=0,則代數式2m2﹣4m+3的值為.15.計算:×(﹣2)=___________.16.如圖,在Rt△ABC中,AC=4,BC=3,將Rt△ABC以點A為中心,逆時針旋轉60°得到△ADE,則線段BE的長度為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.求證:CD是⊙O的切線;若∠D=30°,BD=2,求圖中陰影部分的面積.18.(8分)如圖,∠BAO=90°,AB=8,動點P在射線AO上,以PA為半徑的半圓P交射線AO于另一點C,CD∥BP交半圓P于另一點D,BE∥AO交射線PD于點E,EF⊥AO于點F,連接BD,設AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長.(3)在點P的整個運動過程中.①當AF=3CF時,求出所有符合條件的m的值.②當tan∠DBE=時,直接寫出△CDP與△BDP面積比.19.(8分)2019年我市在“展銷會”期間,對周邊道路進行限速行駛.道路AB段為監(jiān)測區(qū),C、D為監(jiān)測點(如圖).已知C、D、B在同一條直線上,且,CD=400米,,.求道路AB段的長;(精確到1米)如果AB段限速為60千米/時,一輛車通過AB段的時間為90秒,請判斷該車是否超速,并說明理由.(參考數據:,,)20.(8分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.(1)求y與x之間的函數關系式;(2)直接寫出當x>0時,不等式x+b>的解集;(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.21.(8分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.22.(10分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.23.(12分)如圖,有長為14m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬AB為xm,面積為Sm1.求S與x的函數關系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當AB的長是多少米時,圍成的花圃的面積最大?24.先化簡:,再請你選擇一個合適的數作為x的值代入求值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】判斷一元二次方程的根的情況,只要看根的判別式的值的符號即可:∵a=1,b=,c=,∴.∴此方程有兩個不相等的實數根.故選C.2、B【解析】

本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進行計算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【點睛】掌握分類討論的方法是本題解題的關鍵.3、C【解析】

如圖(見解析),連接BD、CD,根據圓周角定理可得,再根據相似三角形的判定定理可得,然后由相似三角形的性質可得,同理可得;又根據圓周角定理可得,再根據正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質、正切函數值等知識點,通過作輔助線,結合圓周角定理得出相似三角形是解題關鍵.4、D【解析】分析:根據軸對稱圖形與中心對稱圖形的概念結合矩形、平行四邊形、直角梯形、正五邊形的性質求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖形重合.5、C【解析】分析:根據眾數的定義先求出x的值,再把數據按從小到大的順序排列,找出最中間的數,即可得出答案.詳解:∵數據1,2,x,5,6的眾數為6,∴x=6,把這些數從小到大排列為:1,2,5,6,6,最中間的數是5,則這組數據的中位數為5;故選C.點睛:本題考查了中位數的知識點,將一組數據按照從小到大的順序排列,如果數據的個數為奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數為偶數,則中間兩個數據的平均數就是這組數據的中位數.6、A【解析】

解:的倒數是.故選A.【點睛】本題考查倒數,掌握概念正確計算是解題關鍵.7、D【解析】

根據正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數互為相反數可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.8、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內角和定理等知識,解題的關鍵是記住扇形的面積公式:S=.9、D【解析】

根據中心對稱圖形的概念和識別.【詳解】根據中心對稱圖形的概念和識別,可知D是中心對稱圖形,A、C是軸對稱圖形,D既不是中心對稱圖形,也不是軸對稱圖形.故選D.【點睛】本題考查中心對稱圖形,掌握中心對稱圖形的概念,會判斷一個圖形是否是中心對稱圖形.10、B【解析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉的性質可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉的性質.二、填空題(本大題共6個小題,每小題3分,共18分)11、(x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案為(x+y)(x-y).12、1.【解析】

由周長和面積可分別求得a+b和ab的值,再利用因式分解把所求代數式可化為ab(a+b),代入可求得答案【詳解】∵長、寬分別為a、b的矩形,它的周長為14,面積為10,

∴a+b==7,ab=10,

∴a2b+ab2=ab(a+b)=10×7=1,

故答案為:1.【點睛】本題主要考查因式分解的應用,把所求代數式化為ab(a+b)是解題的關鍵.13、.【解析】

根據判別式的意義得到,然后解不等式即可.【詳解】解:關于的一元二次方程有兩個不相等的實數根,,解得:,故答案為:.【點睛】此題考查了一元二次方程的根的判別式:當,方程有兩個不相等的實數根;當,方程有兩個相等的實數根;當,方程沒有實數根.14、1【解析】試題分析:先求出m2﹣2m的值,然后把所求代數式整理出已知條件的形式并代入進行計算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案為1.考點:代數式求值.15、-1【解析】

根據“兩數相乘,異號得負,并把絕對值相乘”即可求出結論.【詳解】故答案為【點睛】本題考查了有理數的乘法,牢記“兩數相乘,同號得正,異號得負,并把絕對值相乘”是解題的關鍵.16、【解析】

連接CE,作EF⊥BC于F,根據旋轉變換的性質得到∠CAE=60°,AC=AE,根據等邊三角形的性質得到CE=AC=4,∠ACE=60°,根據直角三角形的性質、勾股定理計算即可.【詳解】解:連接CE,作EF⊥BC于F,

由旋轉變換的性質可知,∠CAE=60°,AC=AE,

∴△ACE是等邊三角形,

∴CE=AC=4,∠ACE=60°,

∴∠ECF=30°,

∴EF=CE=2,

由勾股定理得,CF==,

∴BF=BC-CF=,

由勾股定理得,BE==,

故答案為:.【點睛】本題考查的是旋轉變換的性質、等邊三角形的判定和性質,掌握旋轉變換對應點到旋轉中心的距離相等、對應點與旋轉中心所連線段的夾角等于旋轉角是解題的關鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)陰影部分面積為【解析】【分析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質,等邊三角形的性質等知識,熟練掌握和靈活運用相關知識是解題的關鍵.18、(1)詳見解析;(2)的長為1;(3)m的值為或;與面積比為或.【解析】

由知,再由知、,據此可得,證≌即可得;

易知四邊形ABEF是矩形,設,可得,證≌得,在中,由,列方程求解可得答案;

分點C在AF的左側和右側兩種情況求解:左側時由知、、,在中,由可得關于m的方程,解之可得;右側時,由知、、,利用勾股定理求解可得.作于點G,延長GD交BE于點H,由≌知,據此可得,再分點D在矩形內部和外部的情況求解可得.【詳解】如圖1,,,,、,,,≌,.,,,,,四邊形ABEF是矩形,設,則,,,,,≌,,≌,,在中,,即,解得:,的長為1.如圖1,當點C在AF的左側時,,則,,,,在中,由可得,解得:負值舍去;如圖2,當點C在AF的右側時,,,,,,在中,由可得,解得:負值舍去;綜上,m的值為或;如圖3,過點D作于點G,延長GD交BE于點H,≌,,又,且,,當點D在矩形ABEF的內部時,由可設、,則,,則;如圖4,當點D在矩形ABEF的外部時,由可設、,則,,則,綜上,與面積比為或.【點睛】本題考查了四邊形的綜合問題,解題的關鍵是掌握矩形的判定與性質、全等三角形的判定和性質及勾股定理、三角形的面積等知識點.19、(1)AB≈1395米;(2)沒有超速.【解析】

(1)先根據tan∠ADC=2求出AC,再根據∠ABC=35°結合正弦值求解即可(2)根據速度的計算公式求解即可.【詳解】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC==2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB==≈1395米;(2)∵AB=1395,∴該車的速度==55.8km/h<60千米/時,故沒有超速.【點睛】此題重點考察學生對三角函數值的實際應用,熟練掌握三角函數值的實際應用是解題的關鍵.20、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數關系式;(2)依據A(1,3),可得當x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標.詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數關系式為:y=;(2)∵A(1,3),∴當x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點B的坐標為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點睛:本題考查了反比例函數與一次函數的交點問題:求反比例函數與一次函數的交點坐標,把兩個函數關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.21、(1)CD=BE,理由見解析;(1)證明見解析.【解析】

(1)由兩個三角形為等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根據“SAS”可證得△EAB≌△CAD,即可得出結論;(1)根據(1)中結論和等腰直角三角形的性質得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后證得EF=FD,BE=CD,等量代換即可得出結論.【詳解】解:(1)CD=BE,理由如下:∵△ABC和△ADE為等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB與△CAD中,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【點睛】本題考查了全等三角形的判定和性質,等腰直角三角形的性質,勾股定理等知識,結合題意尋找出三角形全等的條件是解決此題的關鍵.22、(1)坡底C點到大樓距離AC的值為20米;(2)斜坡CD的長度為80-120米.【解析】分析:(1)在直角三角形ABC中,利用銳角三角函數定義求出AC的長即可;(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點到大樓距離AC的值是20米.(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設CD=x米,在Rt△CDE中,DE=x米,CE=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論