齊齊哈爾醫(yī)學(xué)院《智能算法應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
齊齊哈爾醫(yī)學(xué)院《智能算法應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
齊齊哈爾醫(yī)學(xué)院《智能算法應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
齊齊哈爾醫(yī)學(xué)院《智能算法應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
齊齊哈爾醫(yī)學(xué)院《智能算法應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁齊齊哈爾醫(yī)學(xué)院《智能算法應(yīng)用》

2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的自然語言生成任務(wù)中,預(yù)訓(xùn)練語言模型如GPT-3取得了顯著進(jìn)展。假設(shè)要使用預(yù)訓(xùn)練語言模型生成一篇新聞報道,以下哪個步驟是最重要的?()A.選擇合適的預(yù)訓(xùn)練模型B.對模型進(jìn)行微調(diào)C.設(shè)計輸入的提示信息D.評估生成的文本質(zhì)量2、人工智能在自動駕駛領(lǐng)域有重要的應(yīng)用。假設(shè)一輛自動駕駛汽車在行駛過程中需要做出決策,以下關(guān)于自動駕駛中的人工智能決策的描述,正確的是:()A.自動駕駛汽車的決策完全依賴于預(yù)先設(shè)定的規(guī)則和算法,不具備自主學(xué)習(xí)和適應(yīng)能力B.復(fù)雜的交通環(huán)境和意外情況不會對自動駕駛汽車的決策造成困難,因為其具有完美的感知和預(yù)測能力C.自動駕駛汽車在決策時需要綜合考慮多種因素,如交通規(guī)則、行人行為和車輛狀態(tài)等D.人類駕駛員的干預(yù)對自動駕駛汽車的決策沒有任何幫助,反而可能導(dǎo)致系統(tǒng)混亂3、在人工智能的音樂創(chuàng)作領(lǐng)域,計算機(jī)可以生成音樂作品。假設(shè)我們要利用人工智能創(chuàng)作一首流行歌曲,以下關(guān)于人工智能音樂創(chuàng)作的描述,哪一項是不正確的?()A.可以模仿特定音樂風(fēng)格和作曲家的特點(diǎn)B.能夠完全替代人類音樂家的創(chuàng)作靈感C.需要大量的音樂數(shù)據(jù)進(jìn)行訓(xùn)練D.生成的音樂可能缺乏情感和藝術(shù)表達(dá)4、在人工智能的語音合成領(lǐng)域,假設(shè)要生成自然流暢、富有情感的語音,以下關(guān)于語音合成技術(shù)的描述,正確的是:()A.參數(shù)合成方法能夠靈活控制語音的特征,但音質(zhì)相對較差B.拼接合成方法生成的語音自然度高,但需要大量的語音庫支持C.深度學(xué)習(xí)的語音合成模型可以同時實現(xiàn)高質(zhì)量和高自然度的語音生成D.語音合成的情感表達(dá)只能通過調(diào)整語音的音調(diào)來實現(xiàn)5、人工智能中的“膠囊網(wǎng)絡(luò)(CapsuleNetwork)”的主要優(yōu)勢是?()A.對姿態(tài)和變形的魯棒性B.減少參數(shù)數(shù)量C.提高訓(xùn)練速度D.增強(qiáng)可解釋性6、人工智能中的無人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們在討論無人駕駛汽車的責(zé)任歸屬問題,以下關(guān)于無人駕駛責(zé)任的說法,哪一項是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無人駕駛汽車的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任7、人工智能中的模型壓縮技術(shù)可以減少模型的參數(shù)數(shù)量和計算量。假設(shè)要在移動設(shè)備上部署一個深度學(xué)習(xí)模型,以下哪種模型壓縮方法可能最有效?()A.剪枝B.量化C.知識蒸餾D.以上都有可能8、人工智能在醫(yī)療影像診斷中的應(yīng)用越來越廣泛。假設(shè)利用人工智能輔助醫(yī)生診斷X光片,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.能夠快速檢測出影像中的異常區(qū)域,提高診斷效率B.可以為醫(yī)生提供量化的分析指標(biāo)和輔助診斷建議C.人工智能的診斷結(jié)果總是準(zhǔn)確無誤的,醫(yī)生可以完全依賴D.醫(yī)生的專業(yè)知識和臨床經(jīng)驗在結(jié)合人工智能診斷結(jié)果時仍然非常重要9、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,在自然語言處理任務(wù)中取得了顯著成果。假設(shè)要將預(yù)訓(xùn)練語言模型應(yīng)用于特定領(lǐng)域的文本分類任務(wù),以下關(guān)于預(yù)訓(xùn)練模型應(yīng)用的描述,正確的是:()A.可以直接使用預(yù)訓(xùn)練模型進(jìn)行分類,無需任何微調(diào)就能獲得良好的效果B.預(yù)訓(xùn)練模型的參數(shù)是固定的,不能根據(jù)新的任務(wù)和數(shù)據(jù)進(jìn)行調(diào)整C.在預(yù)訓(xùn)練模型的基礎(chǔ)上,使用特定領(lǐng)域的數(shù)據(jù)進(jìn)行微調(diào),可以提高在該領(lǐng)域任務(wù)中的性能D.預(yù)訓(xùn)練語言模型對計算資源要求不高,任何設(shè)備都能輕松應(yīng)用10、人工智能在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)要開發(fā)一個能夠識別水果種類的圖像識別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項是最關(guān)鍵的?()A.對圖像進(jìn)行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對圖像進(jìn)行增強(qiáng)和去噪處理,提高圖像質(zhì)量D.隨機(jī)打亂圖像的順序,增加數(shù)據(jù)的多樣性11、人工智能中的多智能體系統(tǒng)是由多個相互作用的智能體組成的。假設(shè)在一個物流配送場景中,多個配送車輛作為智能體需要協(xié)同工作以優(yōu)化配送路線。那么,以下關(guān)于多智能體系統(tǒng)的特點(diǎn),哪一項是不正確的?()A.智能體之間需要進(jìn)行有效的通信和協(xié)調(diào)B.單個智能體的決策會影響整個系統(tǒng)的性能C.多智能體系統(tǒng)總是能夠達(dá)到全局最優(yōu)解D.智能體可以具有不同的目標(biāo)和策略12、深度學(xué)習(xí)在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)我們正在訓(xùn)練一個深度神經(jīng)網(wǎng)絡(luò)來識別不同種類的動物。如果訓(xùn)練數(shù)據(jù)中某些動物類別的樣本數(shù)量過少,可能會導(dǎo)致什么問題?()A.模型過擬合B.模型欠擬合C.訓(xùn)練速度加快D.模型的準(zhǔn)確率提高13、人工智能在智能交通系統(tǒng)中的應(yīng)用包括交通流量預(yù)測和智能信號燈控制等。假設(shè)要優(yōu)化一個城市的交通信號燈系統(tǒng),以下關(guān)于智能交通中的人工智能應(yīng)用的描述,正確的是:()A.僅依靠歷史交通數(shù)據(jù)就能實現(xiàn)最優(yōu)的信號燈控制策略,無需考慮實時交通狀況B.人工智能算法在交通流量預(yù)測中總是能夠準(zhǔn)確預(yù)測未來的交通狀況,不受突發(fā)情況的影響C.結(jié)合實時交通數(shù)據(jù)、傳感器信息和深度學(xué)習(xí)算法,可以動態(tài)優(yōu)化交通信號燈控制,提高交通效率D.智能交通系統(tǒng)中的人工智能應(yīng)用會導(dǎo)致交通管理的復(fù)雜性增加,不如傳統(tǒng)方法可靠14、人工智能在智能推薦系統(tǒng)中發(fā)揮著關(guān)鍵作用。假設(shè)一個電商平臺要利用人工智能為用戶提供個性化推薦,以下關(guān)于其應(yīng)用的描述,哪一項是不準(zhǔn)確的?()A.通過分析用戶的瀏覽歷史、購買行為等數(shù)據(jù),了解用戶的興趣偏好B.利用協(xié)同過濾算法可以找到與目標(biāo)用戶相似的其他用戶,進(jìn)行推薦C.深度學(xué)習(xí)模型能夠捕捉復(fù)雜的用戶行為模式,提供更精準(zhǔn)的推薦D.智能推薦系統(tǒng)能夠完全滿足用戶的所有需求,不需要用戶進(jìn)一步篩選和選擇15、在人工智能的倫理和法律問題中,算法偏見是一個需要關(guān)注的重點(diǎn)。假設(shè)一個招聘用的人工智能系統(tǒng)由于數(shù)據(jù)偏差導(dǎo)致對某些特定群體的不公平篩選。以下哪種方法在發(fā)現(xiàn)和糾正算法偏見方面最為重要?()A.算法審計B.數(shù)據(jù)清洗和預(yù)處理C.引入多樣化的數(shù)據(jù)集D.以上方法綜合運(yùn)用16、人工智能在制造業(yè)中的應(yīng)用可以提高生產(chǎn)效率和產(chǎn)品質(zhì)量。假設(shè)一家工廠使用人工智能進(jìn)行質(zhì)量檢測。以下關(guān)于人工智能在制造業(yè)中的應(yīng)用描述,哪一項是不正確的?()A.通過機(jī)器視覺技術(shù)檢測產(chǎn)品表面的缺陷和瑕疵B.利用數(shù)據(jù)分析預(yù)測設(shè)備的故障,提前進(jìn)行維護(hù)C.人工智能可以完全自主地優(yōu)化生產(chǎn)流程,無需人工干預(yù)D.與機(jī)器人技術(shù)結(jié)合,實現(xiàn)自動化生產(chǎn)和裝配17、在人工智能的發(fā)展中,機(jī)器學(xué)習(xí)是一個重要的分支。假設(shè)一個醫(yī)療團(tuán)隊想要利用機(jī)器學(xué)習(xí)來預(yù)測某種疾病的發(fā)病風(fēng)險,他們收集了大量患者的基因數(shù)據(jù)、生活習(xí)慣、病史等多維度信息。在選擇機(jī)器學(xué)習(xí)算法時,需要考慮數(shù)據(jù)的特點(diǎn)、模型的復(fù)雜度和預(yù)測的準(zhǔn)確性等因素。以下哪種機(jī)器學(xué)習(xí)算法可能最適合這個任務(wù)?()A.決策樹算法,通過對特征的逐步劃分進(jìn)行預(yù)測B.線性回歸算法,建立變量之間的線性關(guān)系進(jìn)行預(yù)測C.支持向量機(jī)算法,尋找最優(yōu)分類超平面進(jìn)行分類預(yù)測D.樸素貝葉斯算法,基于概率計算進(jìn)行分類18、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時實現(xiàn)模型訓(xùn)練。假設(shè)多個機(jī)構(gòu)想要聯(lián)合訓(xùn)練一個人工智能模型,同時保護(hù)各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)可以在不共享原始數(shù)據(jù)的情況下,直接合并各機(jī)構(gòu)的模型參數(shù)進(jìn)行訓(xùn)練B.聯(lián)邦學(xué)習(xí)過程中不存在通信開銷和安全風(fēng)險C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學(xué)習(xí)能夠在保護(hù)數(shù)據(jù)隱私的前提下協(xié)同訓(xùn)練模型D.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡單的模型,對于大規(guī)模和復(fù)雜的任務(wù)不適用19、在人工智能的發(fā)展中,硬件的支持對于提高計算效率和性能至關(guān)重要。假設(shè)要訓(xùn)練一個大規(guī)模的深度學(xué)習(xí)模型,需要快速處理海量的數(shù)據(jù)。以下哪種硬件架構(gòu)或設(shè)備在加速模型訓(xùn)練方面具有顯著的優(yōu)勢?()A.CPUB.GPUC.TPUD.FPGA20、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)是一種創(chuàng)新的模型架構(gòu)。以下關(guān)于GAN的說法,不正確的是()A.GAN由生成器和判別器組成,通過兩者之間的對抗訓(xùn)練來生成逼真的數(shù)據(jù)B.GAN在圖像生成、文本生成和數(shù)據(jù)增強(qiáng)等領(lǐng)域取得了顯著的成果C.GAN的訓(xùn)練過程穩(wěn)定,容易收斂到最優(yōu)解D.GAN的應(yīng)用存在一些潛在的問題,如模式崩潰和訓(xùn)練不穩(wěn)定等21、在人工智能的自動駕駛領(lǐng)域,為了確保車輛在各種路況和天氣條件下的安全行駛,需要綜合考慮多個傳感器的數(shù)據(jù)進(jìn)行決策。以下哪種傳感器的數(shù)據(jù)融合方法可能是關(guān)鍵的技術(shù)挑戰(zhàn)?()A.基于卡爾曼濾波B.基于深度學(xué)習(xí)C.基于貝葉斯估計D.以上都是22、在人工智能的應(yīng)用中,自動駕駛是一個具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動駕駛汽車需要在復(fù)雜的交通環(huán)境中做出安全的駕駛決策,需要融合多種傳感器的數(shù)據(jù)。以下關(guān)于傳感器融合的方法,哪一項是不正確的?()A.使用卡爾曼濾波將不同傳感器的數(shù)據(jù)進(jìn)行融合,以獲得更準(zhǔn)確的車輛狀態(tài)估計B.簡單地將各個傳感器的數(shù)據(jù)相加,作為最終的決策依據(jù)C.基于深度學(xué)習(xí)的方法,自動學(xué)習(xí)不同傳感器數(shù)據(jù)之間的關(guān)系D.采用加權(quán)平均的方式,根據(jù)傳感器的可靠性為其分配不同的權(quán)重23、在人工智能的模型部署階段,需要考慮許多實際問題。假設(shè)要將一個訓(xùn)練好的人工智能模型部署到移動設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的方法,哪一項是不正確的?()A.采用量化技術(shù),減少模型的參數(shù)精度B.進(jìn)行模型剪枝,去除不重要的連接和神經(jīng)元C.直接將訓(xùn)練好的模型原封不動地部署到移動設(shè)備上,不進(jìn)行任何優(yōu)化D.使用知識蒸餾技術(shù),將復(fù)雜模型的知識遷移到較小的模型中24、假設(shè)在一個智能工廠的質(zhì)量檢測環(huán)節(jié),需要利用人工智能技術(shù)自動檢測產(chǎn)品的缺陷,以下哪種圖像分析技術(shù)和模型可能會被采用?()A.傳統(tǒng)的圖像處理算法B.基于深度學(xué)習(xí)的目標(biāo)檢測C.基于特征工程的分類模型D.以上都是25、強(qiáng)化學(xué)習(xí)是人工智能中的一種學(xué)習(xí)方法,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個機(jī)器人需要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走而不摔倒。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項是不正確的?()A.智能體通過與環(huán)境進(jìn)行交互,根據(jù)獲得的獎勵來調(diào)整自己的行為策略B.強(qiáng)化學(xué)習(xí)需要大量的試驗和錯誤來找到最優(yōu)策略,計算成本較高C.可以用于解決連續(xù)動作空間和高維度狀態(tài)空間的問題D.強(qiáng)化學(xué)習(xí)不需要對環(huán)境有任何先驗知識,完全依靠隨機(jī)探索來學(xué)習(xí)26、在人工智能的倫理和社會影響方面,存在許多值得關(guān)注的問題。假設(shè)人工智能系統(tǒng)在招聘過程中被用于篩選候選人,以下關(guān)于這種應(yīng)用的說法,哪一項是需要謹(jǐn)慎考慮的?()A.可以完全避免人為的偏見和不公平B.可能會因為數(shù)據(jù)偏差導(dǎo)致某些群體受到不公平對待C.其決策結(jié)果應(yīng)該無條件被接受和執(zhí)行D.不需要對其進(jìn)行監(jiān)管和評估27、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)我們要利用深度學(xué)習(xí)模型診斷肺部CT影像中的結(jié)節(jié),以下關(guān)于模型訓(xùn)練的說法,哪一項是正確的?()A.可以使用少量標(biāo)注數(shù)據(jù)獲得準(zhǔn)確的診斷結(jié)果B.模型的泛化能力對于不同醫(yī)院的數(shù)據(jù)不重要C.數(shù)據(jù)增強(qiáng)技術(shù)可以提高模型的魯棒性D.不需要對模型進(jìn)行驗證和評估28、在人工智能的倫理原則中,公平性是一個重要的考量因素。假設(shè)我們要開發(fā)一個用于招聘的人工智能系統(tǒng),以下關(guān)于確保公平性的方法,哪一項是不正確的?()A.對數(shù)據(jù)進(jìn)行預(yù)處理,消除潛在的偏差B.透明公開算法的工作原理和決策依據(jù)C.不考慮候選人的背景信息,只根據(jù)能力評估D.完全依賴人工智能系統(tǒng)的決策,不進(jìn)行人工干預(yù)29、對于一個智能聊天機(jī)器人,需要理解用戶輸入的自然語言并生成合理的回復(fù)。假設(shè)用戶提出了一個復(fù)雜且含義模糊的問題,聊天機(jī)器人要準(zhǔn)確理解用戶的意圖并提供有用的回答。以下哪種技術(shù)或方法對于提高聊天機(jī)器人的理解和生成能力是關(guān)鍵的?()A.構(gòu)建大規(guī)模的語料庫,通過匹配來生成回復(fù)B.運(yùn)用深度學(xué)習(xí)模型,如Transformer架構(gòu)進(jìn)行訓(xùn)練C.基于模板的回復(fù)生成,限制回復(fù)的多樣性D.不考慮上下文,只根據(jù)問題的關(guān)鍵詞生成回復(fù)30、在人工智能的應(yīng)用中,語音合成技術(shù)可以將文本轉(zhuǎn)換為自然流暢的語音。假設(shè)要為一款智能導(dǎo)航應(yīng)用開發(fā)語音合成功能,以下哪個因素對于合成語音的質(zhì)量影響最大?()A.語音的音色選擇B.文本的語法結(jié)構(gòu)C.語音的韻律和語調(diào)D.文本的詞匯量二、操作題(本大題共5個小題,共25分)1、(本題5分)基于Python的OpenCV庫和深度學(xué)習(xí)框架,實現(xiàn)一個實時的車輛品牌和型號識別系統(tǒng)。能夠在道路上準(zhǔn)確識別出不同品牌和型號的車輛,并進(jìn)行實時的統(tǒng)計和分析。2、(本題5分)使用Pyth

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論