山東青年政治學院《版面設(shè)計》2023-2024學年第二學期期末試卷_第1頁
山東青年政治學院《版面設(shè)計》2023-2024學年第二學期期末試卷_第2頁
山東青年政治學院《版面設(shè)計》2023-2024學年第二學期期末試卷_第3頁
山東青年政治學院《版面設(shè)計》2023-2024學年第二學期期末試卷_第4頁
山東青年政治學院《版面設(shè)計》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁山東青年政治學院《版面設(shè)計》

2023-2024學年第二學期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的目標檢測中,對于小目標的檢測往往具有較大的挑戰(zhàn)性。為了提高小目標檢測的準確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓練數(shù)據(jù)中的小目標樣本C.使用更高分辨率的輸入圖像D.以上都是2、在計算機視覺的場景理解任務(wù)中,需要對整個圖像場景進行分析和解釋。假設(shè)我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關(guān)系。以下哪種方法能夠提供更全面和深入的場景理解?()A.基于對象檢測和分類的方法B.基于語義分割和圖模型的方法C.基于深度學習的場景解析網(wǎng)絡(luò)D.基于特征匹配和聚類的方法3、在計算機視覺的圖像配準任務(wù)中,將不同視角或時間拍攝的圖像進行對齊,以下哪種變換模型可能適用于具有較大形變的圖像配準?()A.剛性變換B.仿射變換C.投影變換D.非線性變換4、在計算機視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要對一組風景圖像進行特征提取,以便后續(xù)的圖像檢索和分類任務(wù)。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉(zhuǎn)、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經(jīng)網(wǎng)絡(luò)自動學習的特征5、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優(yōu)勢在于()A.去噪效果好B.保持圖像細節(jié)C.計算效率高D.以上都是6、在計算機視覺的視覺跟蹤任務(wù)中,目標在運動過程中可能會發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準確性,以下哪種策略可能是有效的?()A.模型更新機制B.多特征融合C.抗遮擋處理D.以上都是7、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設(shè)我們要分析一個視頻中物體的運動速度和方向,以下哪種光流估計算法在復雜場景下能夠提供更準確的結(jié)果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法8、假設(shè)要構(gòu)建一個能夠?qū)嬜髌愤M行真?zhèn)舞b定的計算機視覺系統(tǒng),需要對作品的筆觸、線條和風格等特征進行分析。以下哪種技術(shù)在書畫鑒定中可能具有應(yīng)用前景?()A.筆跡分析B.風格遷移C.圖像風格分析D.以上都是9、在計算機視覺的車牌識別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準確識別出車牌號碼。以下哪種技術(shù)可能有助于提高識別準確率?()A.字符分割和單獨識別B.利用深度學習模型進行端到端的識別C.只關(guān)注車牌的顏色特征D.隨機猜測車牌號碼10、計算機視覺中的光流計算用于估計圖像中像素的運動。假設(shè)要分析一段視頻中物體的運動速度和方向。以下關(guān)于光流計算的描述,哪一項是不準確的?()A.可以通過比較連續(xù)幀之間的像素差異來計算光流B.光流計算能夠為視頻中的目標跟蹤和行為分析提供重要信息C.無論視頻的幀率和分辨率如何,光流計算都能準確地估計像素運動D.深度學習方法也被應(yīng)用于光流計算,提高了計算的準確性和效率11、在計算機視覺的醫(yī)學圖像分析任務(wù)中,假設(shè)要檢測醫(yī)學圖像中的腫瘤區(qū)域。以下哪種方法可能更適合處理醫(yī)學圖像的特殊性?()A.結(jié)合先驗醫(yī)學知識和圖像特征B.使用通用的圖像檢測算法,不考慮醫(yī)學背景C.只對圖像的部分區(qū)域進行分析,忽略其他部分D.隨機標記圖像中的區(qū)域為腫瘤區(qū)域12、在計算機視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要處理一張被噪聲嚴重污染的天文圖像,以下關(guān)于圖像去噪方法的描述,哪一項是不正確的?()A.均值濾波和中值濾波等傳統(tǒng)方法可以在一定程度上去除噪聲,但可能會模糊圖像細節(jié)B.基于小波變換的方法能夠在去除噪聲的同時較好地保留圖像的邊緣和細節(jié)C.深度學習方法通過學習噪聲和干凈圖像之間的映射關(guān)系,實現(xiàn)有效的去噪D.圖像去噪可以完全恢復被噪聲破壞的原始圖像信息,沒有任何損失13、在計算機視覺的場景理解任務(wù)中,假設(shè)要理解一個室內(nèi)場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準確理解場景是至關(guān)重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區(qū)域進行分析14、在計算機視覺中,以下哪種方法常用于圖像的顯著目標檢測中的高層語義信息利用?()A.深度學習B.圖模型C.注意力機制D.以上都是15、在計算機視覺中,圖像增強技術(shù)用于改善圖像的質(zhì)量。以下關(guān)于圖像增強的描述,不正確的是()A.圖像增強可以包括對比度增強、銳化、去噪等操作B.圖像增強的目的是使圖像更適合人類視覺觀察或后續(xù)的處理任務(wù)C.過度的圖像增強可能會導致圖像失真或引入噪聲D.圖像增強只對低質(zhì)量的圖像有效果,對于高質(zhì)量的圖像沒有必要進行增強16、對于圖像的語義理解任務(wù),假設(shè)要理解一張圖像所表達的場景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會。圖像中的信息可能比較隱晦和復雜。以下哪種方法可能有助于提高語義理解的準確性?()A.構(gòu)建圖像的語義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對圖像進行簡單的分類,不進行深入的語義分析D.隨機猜測圖像的語義17、計算機視覺中的場景文本識別旨在從圖像中識別出文字信息。假設(shè)要在一張街景圖像中識別出店鋪招牌上的文字。以下關(guān)于場景文本識別方法的描述,正確的是:()A.基于光學字符識別(OCR)技術(shù)的方法對字體和排版的變化適應(yīng)性強,識別準確率高B.深度學習中的端到端文本識別模型能夠處理彎曲和變形的文本,但對模糊文本效果不佳C.場景文本識別只需要關(guān)注文本的內(nèi)容,不需要考慮文本的位置和上下文信息D.所有的場景文本識別方法都能夠在復雜的自然場景中準確無誤地識別出各種文字18、在計算機視覺的立體視覺中,需要通過兩個或多個相機獲取的圖像來計算深度信息。假設(shè)要為一個自動駕駛汽車構(gòu)建立體視覺系統(tǒng),以測量與前方障礙物的距離,同時要考慮實時性和準確性的要求。以下哪種立體匹配算法在這種應(yīng)用場景中表現(xiàn)最優(yōu)?()A.基于區(qū)域的匹配B.基于特征的匹配C.基于深度學習的匹配D.全局優(yōu)化匹配19、在計算機視覺的圖像配準任務(wù)中,假設(shè)要將兩張拍攝角度和時間不同的同一物體的圖像進行精確對齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準方法可能更適合處理這種情況?()A.基于特征點匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進行任何配準操作C.基于圖像灰度值的配準方法,計算灰度差異D.隨機選擇圖像中的點進行匹配20、計算機視覺中的動作識別是一個具有挑戰(zhàn)性的任務(wù)。假設(shè)要識別一段體育比賽視頻中的運動員動作,以下關(guān)于特征選擇的方法,哪一項是不太可行的?()A.提取運動員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來判斷運動員的動作C.計算視頻幀之間的光流變化作為動作特征D.結(jié)合空間和時間維度的特征來描述動作21、假設(shè)要開發(fā)一個能夠?qū)ξ奈镞M行數(shù)字化保護和修復的計算機視覺系統(tǒng),需要對文物的破損部分進行準確識別和重建。以下哪種技術(shù)在文物修復方面可能具有應(yīng)用潛力?()A.圖像修復算法B.三維重建技術(shù)C.虛擬增強現(xiàn)實技術(shù)D.以上都是22、在計算機視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細節(jié)和紋理。以下哪種深度學習架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對抗網(wǎng)絡(luò)(GAN)D.自動編碼器(Autoencoder)23、假設(shè)要開發(fā)一個能夠在低光照條件下清晰拍攝并處理圖像的計算機視覺系統(tǒng),以下哪種圖像增強方法可能有助于改善圖像質(zhì)量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗去霧D.以上都是24、計算機視覺中的姿態(tài)估計是確定物體在三維空間中的位置和方向。假設(shè)要估計一個機器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計方法的描述,哪一項是不正確的?()A.基于視覺的姿態(tài)估計可以通過分析物體在圖像中的特征點來計算其姿態(tài)B.可以結(jié)合多個攝像頭的圖像信息,提高姿態(tài)估計的精度和魯棒性C.姿態(tài)估計通常需要先對物體進行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計的結(jié)果總是非常準確,不受圖像噪聲、遮擋和物體形狀變化的影響25、計算機視覺在工業(yè)檢測中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)要檢測生產(chǎn)線上的零件是否存在缺陷,以下關(guān)于工業(yè)檢測中的計算機視覺應(yīng)用的描述,哪一項是不正確的?()A.可以使用機器視覺系統(tǒng)對零件進行實時檢測,快速發(fā)現(xiàn)缺陷B.深度學習模型能夠自動學習正常零件和缺陷零件的特征差異,實現(xiàn)準確的缺陷檢測C.工業(yè)檢測中的計算機視覺系統(tǒng)需要具備高度的準確性和穩(wěn)定性,能夠適應(yīng)不同的生產(chǎn)環(huán)境D.計算機視覺在工業(yè)檢測中只能檢測外觀缺陷,對于零件的內(nèi)部結(jié)構(gòu)和性能無法進行評估26、在計算機視覺的動作識別任務(wù)中,識別視頻中的人物動作。假設(shè)要識別一段舞蹈視頻中的動作,以下關(guān)于動作識別方法的描述,哪一項是不正確的?()A.可以提取視頻中的時空特征,如光流和運動軌跡,來描述動作B.基于深度學習的方法,如3D卷積神經(jīng)網(wǎng)絡(luò),能夠直接處理視頻數(shù)據(jù),進行動作識別C.動作識別需要考慮動作的速度、幅度和節(jié)奏等特征D.動作識別只適用于簡單的、規(guī)范化的動作,對于復雜的、個性化的動作無法準確識別27、在計算機視覺的無人駕駛領(lǐng)域,環(huán)境感知是關(guān)鍵環(huán)節(jié)。假設(shè)要讓無人駕駛汽車準確感知周圍的道路狀況、車輛和行人,同時要應(yīng)對惡劣天氣和復雜交通場景。以下哪種環(huán)境感知技術(shù)在這種高要求的應(yīng)用中發(fā)揮著重要作用?()A.激光雷達感知B.攝像頭視覺感知C.毫米波雷達感知D.以上技術(shù)融合感知28、計算機視覺中的光流計算用于估計圖像中像素的運動。假設(shè)要對一個快速運動的物體進行光流估計,同時場景中存在光照變化和噪聲干擾。在這種情況下,以下哪種光流計算方法能夠提供更準確和穩(wěn)定的結(jié)果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法29、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中有重要作用。假設(shè)要在VR環(huán)境中實現(xiàn)真實感的物體交互,以下哪種技術(shù)可能對準確感知物體的位置和姿態(tài)至關(guān)重要?()A.立體視覺B.光場成像C.結(jié)構(gòu)光D.運動捕捉30、在計算機視覺的圖像修復任務(wù)中,假設(shè)要填補圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復圖像的完整性和真實性?()A.基于擴散的修復方法B.基于深度學習的圖像修復模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進行修復,保留圖像的缺失部分二、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)使用目標檢測技術(shù),從氣象衛(wèi)星圖像中檢測出暴雨和臺風等災害區(qū)域。2、(本題5分)使用目標檢測技術(shù),從醫(yī)療影像中檢測出腫瘤等病變區(qū)域。3、(本題5分)開發(fā)一個可以識別不同種類昆蟲的計算機視覺系統(tǒng)。4、(本題5分)對天文觀測圖像中的行星和恒星進行分類和識別。5、(本題5分)使用目標跟蹤算法,跟蹤武術(shù)表演中運動員的動作軌跡。三、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述圖像的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論