2025屆廣東省云浮市數(shù)學八下期末復習檢測試題含解析_第1頁
2025屆廣東省云浮市數(shù)學八下期末復習檢測試題含解析_第2頁
2025屆廣東省云浮市數(shù)學八下期末復習檢測試題含解析_第3頁
2025屆廣東省云浮市數(shù)學八下期末復習檢測試題含解析_第4頁
2025屆廣東省云浮市數(shù)學八下期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省云浮市數(shù)學八下期末復習檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.甲、乙、丙、丁四位選手各射擊10次,每人的平均成績都是9.3環(huán),方差如下表所示:選手甲乙丙丁方差0.0350.0360.0280.015則這四人中成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁2.方程的左邊配成完全平方后所得方程為()A. B. C. D.3.若直線y=kx+b經(jīng)過一、二、四象限,則直線y=bx﹣k的圖象只能是圖中的()A. B. C. D.4.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.5.用長為5,6,7的三條線段可以首尾依次相接組成三角形的事件是()A.隨機事件 B.必然事件 C.不可能事件 D.以上都不是6.已知一次函數(shù)的圖象不經(jīng)過第三象限,則、的符號是()A., B., C., D.,7.平面直角坐標系中,點A的坐標為,將線段OA繞原點O逆時針旋轉(zhuǎn)得到,則點的坐標是A. B. C. D.8.如圖,將三個同樣的正方形的一個頂點重合放置,如果°,°時,那么的度數(shù)是(

)A.15° B.25° C.30° D.45°9.如圖,點P是等邊△ABC的邊上的一個做勻速運動的動點,其由點A開始沿AB邊運動到B再沿BC邊運動到C為止,設運動時間為t,△ACP的面積為S,則S與t的大致圖象是()A. B. C. D.10.下列計算正確的是()A. B.C. D.11.若,則的值是()A. B. C. D.12.如圖,有一張直角三角形紙片,兩條直角邊,,將折疊,使點和點重合,折痕為,則的長為()A.1.8 B.2.5 C.3 D.3.75二、填空題(每題4分,共24分)13.如圖是一張三角形紙片,其中,從紙片上裁出一矩形,要求裁出的矩形的四個頂點都在三角形的邊上,其面積為,則該矩形周長的最小值=________14.有一張一個角為30°,最小邊長為4的直角三角形紙片,沿圖中所示的中位線剪開后,將兩部分拼成一個四邊形,所得四邊形的周長是.15.一組數(shù)據(jù)5、7、7、x中位數(shù)與平均數(shù)相等,則x的值為________.16.函數(shù):y=1x+117.如圖,在矩形ABCD中,AD=2AB,∠BAD的平分線交BC于點E,DH丄AE于點H,連接BH并延長交CD于點F,連接DE交BF①∠AED=∠CED;②OE=OD;③BH=HF;④BC-CF=2HE;⑤AB=HF,其中正確的有__________(只填序號).18.如圖,已知直線,直線m、n與a、b、c分別交于點A、C、E和B、D、F,如果,,,那么______.三、解答題(共78分)19.(8分)(1)先化簡,再求值:÷(﹣),其中a2+3a﹣1=1.(2)若關于x的分式方程+1的解是正數(shù),求m的取值范圍.20.(8分)閱讀下列材料:在因式分解中,把多項式中某些部分看作一個整體,用一個新的字母代替(即換元),不僅可以簡化要分解的多項式的結構,而且能使式子的特點更加明顯,便于觀察如何進行因式分解,我們把這種因式分解的方法稱為“換元法”.下面是小涵同學用換元法對多項式(x2﹣4x+1)(x2﹣4x+7)+9進行因式分解的過程.解:設x2﹣4x=y(tǒng)原式=(y+1)(y+7)+9(第一步)=y(tǒng)2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)請根據(jù)上述材料回答下列問題:(1)小涵同學的解法中,第二步到第三步運用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老師說,小涵同學因式分解的結果不徹底,請你寫出該因式分解的最后結果:;(3)請你用換元法對多項式(x2+2x)(x2+2x+2)+1進行因式分解.21.(8分)如圖,A,B是直線y=x+4與坐標軸的交點,直線y=-2x+b過點B,與x軸交于點C.(1)求A,B,C三點的坐標;(2)點D是折線A—B—C上一動點.①當點D是AB的中點時,在x軸上找一點E,使ED+EB的和最小,用直尺和圓規(guī)畫出點E的位置(保留作圖痕跡,不要求寫作法和證明),并求E點的坐標.②是否存在點D,使△ACD為直角三角形,若存在,直接寫出D點的坐標;若不存在,請說明理由22.(10分)甲、乙兩人同時從相距90千米的A地前往B地,甲乘汽車,乙騎摩托車,甲到達B地停留半個小時后返回A地,如圖是他們離A地的距離(千米)與(時間)之間的函數(shù)關系圖像(1)求甲從B地返回A地的過程中,與之間的函數(shù)關系式,并寫出自變量的取值范圍;(2)若乙出發(fā)后2小時和甲相遇,求乙從A地到B地用了多長時間?23.(10分)(1)解方程:=;(2)因式分解:2x2-1.24.(10分)已知,如圖,A點坐標是(1,3),B點坐標是(5,1),C點坐標是(1,1)(1)求△ABC的面積是____;(2)求直線AB的表達式;(3)一次函數(shù)y=kx+2與線段AB有公共點,求k的取值范圍;(4)y軸上有一點P且△ABP與△ABC面積相等,則P點坐標是_____.25.(12分)在平面直角坐標系中,點A的坐標為,以線段OA為邊作等邊三角形,使點B落在第四象限內(nèi),點C為x正半軸上一動點,連接BC,以線段BC為邊作等邊三角形,使點D落在第四象限內(nèi).(1)如圖1,在點C運動的過程巾,連接AD.①和全等嗎?請說明理由:②延長DA交y軸于點E,若,求點C的坐標:(2)如圖2,已知,當點C從點O運動到點M時,點D所走過的路徑的長度為_________26.某校為美化校園,計劃對面積為2000m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成,已知甲隊每天完成綠化的面積是乙隊每天完成綠化的面積的2倍,并且在獨立完成面積為600m2區(qū)域的綠化時,甲隊比乙隊少用6天.(1)甲、乙兩個工程隊每天能完成綠化的面積分別是多少?(2)若學校每天需付給甲隊的綠化費用為0.5萬元,乙隊為0.3萬元,要使這次的綠化總費用不超過10萬元,至少應安排甲隊工作多少天?

參考答案一、選擇題(每題4分,共48分)1、D【解析】∵0.036>0.035>0.028>0.015,∴丁最穩(wěn)定,故選D.2、A【解析】

根據(jù)配方法的步驟對方程進行配方即可.【詳解】解:移項得:x2+6x=5,

配方可得:x2+6x+9=5+9,

即(x+3)2=14,

故選:A.【點睛】本題考查用配方法解一元二次方程.熟練掌握用配方法解一元二次方程的具體步驟是解決此題的關鍵.3、B【解析】試題分析:∵一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限∴k<0,b>0∴直線y=bx-k經(jīng)過一、二、三象限考點:一次函數(shù)的性質(zhì)4、A【解析】

解:B、C、D都是軸對稱圖形,即對稱軸如下紅色線;故選A.【點睛】此題考查軸對稱圖形和中心對稱圖形的概念.5、B【解析】

根據(jù)三角形的三邊關系定理,判斷是否圍成三角形即可.【詳解】解:根據(jù)三角形的三邊關系,5+6=11>7,所以用長為5cm、6cm、7cm的三條線段一定能組成三角形,所以是必然事件.故選:B.【點睛】本題考查了能夠組成三角形三邊的條件,其實用兩條較短的線段相加,如果大于最長那條就能夠組成三角形了.用到的知識點為:必然事件指在一定條件下一定發(fā)生的事件.6、C【解析】

根據(jù)圖象在坐標平面內(nèi)的位置關系確定,的取值范圍,從而求解.【詳解】解:函數(shù)的圖象不經(jīng)過第三象限,,直線與軸正半軸相交或直線過原點,時.故選:C.【點睛】本題主要考查一次函數(shù)圖象在坐標平面內(nèi)的位置與、的關系.時,直線必經(jīng)過一、三象限;時,直線必經(jīng)過二、四象限;時,直線與軸正半軸相交;時,直線過原點;時,直線與軸負半軸相交.7、A【解析】

如圖作軸于E,軸于利用全等三角形的性質(zhì)即可解決問題;【詳解】如圖作軸于E,軸于F.則≌,,,,故選:A.【點睛】本題考查坐標與圖形變化、全等三角形的判定和性質(zhì)等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考??碱}型.8、A【解析】

根據(jù)∠2=∠BOD+EOC-∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度數(shù)從而求解.【詳解】∵∠BOD=90°-∠3=90°-30°=60°,

∠EOC=90°-∠1=90°-45°=45°,

又∵∠2=∠BOD+∠EOC-∠BOE,

∴∠2=60°+45°-90°=15°.

故選:A.【點睛】此題考查余角和補角,正確理解∠2=∠BOD+EOC-∠BOE這一關系是解題的關鍵.9、C【解析】

設等邊三角形的高為h,點P的運動速度為v,根據(jù)等邊三角形的性質(zhì)可得出點P在AB上運動時△ACP的面積為S,也可得出點P在BC上運動時的表達式,繼而結合選項可得出答案.【詳解】設等邊三角形的高為h,點P的運動速度為v,①點P在AB上運動時,△ACP的面積為S=hvt,是關于t的一次函數(shù)關系式;②當點P在BC上運動時,△ACP的面積為S=h(AB+BC-vt)=-hvt+h(AB+BC),是關于t的一次函數(shù)關系式;故選C.【點睛】此題考查了動點問題的函數(shù)圖象,根據(jù)題意求出兩個階段S與t的關系式,難度一般.10、A【解析】

利用二次根式的性質(zhì)對A進行判斷;根據(jù)二次根式的乘法法則對B進行判斷;根據(jù)二次根式的加減法對C、D進行判斷.【詳解】解:A、原式=4a2,所以A選項的計算正確;B、原式==5a,所以B選項的計算錯誤;C、原式=+=2,所以C選項的計算錯誤;D、與不能合并,所以D選項的計算錯誤.故選:A.【點睛】本題考查二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.11、B【解析】

解:故選:B.【點睛】本題考查同分母分式的加法運算.12、D【解析】

設CD=x,則BD=AD=10-x.在Rt△ACD中運用勾股定理列方程,就可以求出CD的長.【詳解】解:設CD=x,則BD=AD=10-x.∵在Rt△ACD中,(10-x)2=x2+52,100+x2-20x=x2+25,∴20x=75,解得:x=3.75,∴CD=3.75.故選:D.【點睛】本題主要考查了折疊問題和勾股定理的綜合運用.解題時,我們常常設要求的線段長為x,然后根據(jù)折疊和軸對稱的性質(zhì),用含x的代數(shù)式表示其他線段的長度,選擇適當?shù)闹苯侨切?,運用勾股定理列出方程求出答案.二、填空題(每題4分,共24分)13、【解析】

分兩種情況討論,(1)當矩形的其中一邊在上時,設,則,根據(jù)矩形的面積列出方程并求解,然后求得矩形的周長;(2)當矩形的其中一邊在上時,設,則,根據(jù)矩形的面積列出方程并求解,然后求得矩形的周長;兩個周長進行比較可得結果.【詳解】(1)當矩形的其中一邊在上時,如圖所示:設,則∵∴∴整理得:解得當時當時∵∴矩形的周長最小值為(2)當矩形的其中一邊在上時,如圖所示:設,則∵∴∴整理得:解得所以和(1)的結果一致綜上所述:矩形周長的最小值為【點睛】本題考查了矩形的面積和一元二次方程,利用數(shù)形結合是常用的解題方法.14、或1.【解析】

試題分析:此題主要考查了圖形的剪拼,關鍵是根據(jù)畫出圖形,要考慮全面,不要漏解.根據(jù)三角函數(shù)可以計算出BC=8,AC=4,再根據(jù)中位線的性質(zhì)可得CD=AD=,CF=BF=4,DF=2,然后拼圖,出現(xiàn)兩種情況,一種是拼成一個矩形,另一種拼成一個平行四邊形,進而算出周長即可.解:由題意可得:AB=4,∵∠C=30°,∴BC=8,AC=4,∵圖中所示的中位線剪開,∴CD=AD=2,CF=BF=4,DF=2,如圖1所示:拼成一個矩形,矩形周長為:2+2+4+2+2=8+4;如圖2所示,可以拼成一個平行四邊形,周長為:4+4+4+4=1,故答案為8+4或1.考點:1.圖形的剪拼;2.三角形中位線定理.15、5或2【解析】試題分析:根據(jù)平均數(shù)與中位數(shù)的定義就可以解決.中位數(shù)可能是7或1.解:當x≥7時,中位數(shù)與平均數(shù)相等,則得到:(7+7+5+x)=7,解得x=2;當x≤5時:(7+7+5+x)=1,解得:x=5;當5<x<7時:(7+7+x+5)÷4=(x+7)÷2,解得x=5,舍去.所以x的值為5或2.故填5或2.考點:中位數(shù);算術平均數(shù).16、x【解析】

求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,根據(jù)分式分母不為0的條件,要使1x+1在實數(shù)范圍內(nèi)有意義,必須x17、①②③④【解析】

①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=2AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據(jù)全等三角形對應邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據(jù)平角等于180°求出∠CED=67.5°,從而判斷出①正確;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據(jù)等角對等邊可得OE=OD=OH,判斷出②正確;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對應邊相等可得BH=HF,判斷出③正確;④根據(jù)全等三角形對應邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確;⑤判斷出△ABH不是等邊三角形,從而得到AB≠BH,即AB≠HF,得到⑤錯誤.【詳解】∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=2AB,∵AD=2AB,∴AE=AD,在△ABE和△AHD中,∵∠BAE=∠DAE,∠ABE=∠AHD=90°,AE=AD,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°-45°)=67.5°∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;∵AB=AH,∵∠AHB=12(180°-45°)=67.5°,∠OHE=∠AHB∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,∵∠EBH=∠OHD=22.5°,BE=DH,∠AEB=∠HDF=45°,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結論正確的是①②③④.故答案為:①②③④.【點睛】本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),角平分線的定義,等腰三角形的判定與性質(zhì),熟記各性質(zhì)并仔細分析題目條件,根據(jù)相等的度數(shù)求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關鍵,也是本題的難點.18、【解析】

由直線a∥b∥c,根據(jù)平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的長.【詳解】解:由直線a∥b∥c,根據(jù)平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案為.【點睛】此題考查了平行線分線段成比例定理.題目比較簡單,解題的關鍵是注意數(shù)形結合思想的應用.三、解答題(共78分)19、(1);(2)m>1且m≠2.【解析】

(1)根據(jù)分式混合運算順序和運算法則化簡原式,再將a2+2a-1=1,即a2+2a=1整體代入可得;

(2)解分式方程得出x=m-1,由分式方程的解為正數(shù)得m-1>1且m-1≠2,解之即可.【詳解】(1)原式=÷=?==,當a2+2a﹣1=1,即a2+2a=1時,原式==.(2)解方程=+1,得:x=m﹣1,根據(jù)題意知m﹣1>1且m﹣1≠2,解得:m>1且m≠2.【點睛】本題考查分式的混合運算、解分式方程,解題關鍵是熟練掌握分式的混合運算順序和運算法則.20、(1)C;(2)(x﹣2)1;(3)(x+1)1.【解析】

(1)根據(jù)完全平方公式進行分解因式;(2)最后再利用完全平方公式將結果分解到不能分解為止;(3)根據(jù)材料,用換元法進行分解因式.【詳解】(1)故選C;(2)(x2﹣1x+1)(x2﹣1x+7)+9,設x2﹣1x=y,則:原式=(y+1)(y+7)+9=y2+8y+16=(y+1)2=(x2﹣1x+1)2=(x﹣2)1.故答案為:(x﹣2)1;(3)設x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)1.【點睛】本題考查了因式分解﹣換元法,公式法,也是閱讀材料問題,熟練掌握利用公式法分解因式是解題的關鍵.21、(1)A(-4,0);B(0,4);C(2,0);(2)①點E的位置見解析,E(,0);②D點的坐標為(-1,3)或(,)【解析】

(1)先利用一次函數(shù)圖象上點的坐標特點求得點A、B的坐標;然后把B點坐標代入y=?2x+b求出b的值,確定此函數(shù)解析式,然后再求C點坐標;

(2)①根據(jù)軸對稱—最短路徑問題畫出點E的位置,由待定系數(shù)法確定直線DB1的解析式為y=?3x?4,易得點E的坐標;

②分兩種情況:當點D在AB上時,當點D在BC上時.當點D在AB上時,由等腰直角三角形的性質(zhì)求得D點的坐標為(?1,3);當點D在BC上時,設AD交y軸于點F,證△AOF與△BOC全等,得OF=2,點F的坐標為(0,2),求得直線AD的解析式為,與y=?2x+4組成方程組,求得交點D的坐標為(,).【詳解】(1)在y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A(-4,0),B(0,4)把B(0,4)代入y=-2x+b,得b=4,∴直線BC為:y=-2x+4在y=-2x+4中,令y=0,得x=2,∴C點的坐標為(2,0);(2)①如圖∵點D是AB的中點∴D(-2,2)點B關于x軸的對稱點B1的坐標為(0,-4),設直線DB1的解析式為,把D(-2,2),B1(0,-4)代入,得,解得k=-3,b=-4,∴該直線為:y=-3x-4,令y=0,得x=,∴E點的坐標為(,0).②存在,D點的坐標為(-1,3)或(,).當點D在AB上時,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC為直角的等腰直角三角形,∴點D的橫坐標為,當x=-1時,y=x+4=3,∴D點的坐標為(-1,3);當點D在BC上時,如圖,設AD交y軸于點F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴點F的坐標為(0,2),設直線AD的解析式為,將A(-4,0)與F(0,2)代入得,解得,∴,聯(lián)立,解得:,∴D的坐標為(,).綜上所述:D點的坐標為(-1,3)或(,)【點睛】本題是一次函數(shù)的綜合題,難度適中,考查了利用待定系數(shù)法求一次函數(shù)的解析式、軸對稱的最短路徑問題、直角三角形問題,第(2)②題采用了分類討論的思想,與三角形全等結合,解題的關鍵是靈活運用一次函數(shù)的圖象與性質(zhì)以及全等的知識.22、(1)(2)3小時【解析】

(1)設,根據(jù)題意得,解得(2)當時,∴騎摩托車的速度為(千米/時)∴乙從A地到B地用時為(小時)【詳解】請在此輸入詳解!23、(1)x=-10;(2)2(x+2)(x-2)【解析】

(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解;(2)原式先提取公因式,再利用平方差公式分解即可.【詳解】解:(1)去分母得:2x-4=3x+6,解得:x=-10,經(jīng)檢驗x=-10是分式方程的解,∴原方程的解為:x=-10;(2)原式=.【點睛】此題考查了解分式方程以及提公因式法與公式法的綜合運用,熟練掌握分式方程的解法和分解因式的方法是解本題的關鍵.24、(1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).【解析】

(1)根據(jù)A、B、C三點的坐標可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面積公式列式計算即可;(2)設直線AB的表達式為y=kx+b.將A(1,3),B(5,1)代入,利用待定系數(shù)法即可求解;(3)由于y=kx+2是一次函數(shù),所以k≠2,分兩種情況進行討論:①當k>2時,求出y=kx+2過A(1,3)時的k值;②當k<2時,求出y=kx+2過B(5,1)時的k值,進而求解即可;(1)過C點作AB的平行線,交y軸于點P,根據(jù)兩平行線間的距離相等,可知△ABP與△ABC是同底等高的兩個三角形,面積相等.根據(jù)直線平移k值不變可設直線CP的解析式為y=﹣x+n,將C點坐標代入,求出直線CP的解析式,得到P點坐標;再根據(jù)到一條直線距離相等的直線有兩條,可得另外一個P點坐標.【詳解】解:(1)∵A點坐標是(1,3),B點坐標是(5,1),C點坐標是(1,1),∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,∴S△ABC=AC?BC=×2×1=1.故答案為1;(2)設直線AB的表達式為y=kx+b.∵A點坐標是(1,3),B點坐標是(5,1),∴,解得,∴直線AB的表達式為y=﹣x+;(3)當k>2時,y=kx+2過A(1,3)時,3=k+2,解得k=1,∴一次函數(shù)y=kx+2與線段AB有公共點,則2<k≤1;當k<2時,y=kx+2過B(5,1),1=5k+2,解得k=﹣,∴一次函數(shù)y=kx+2與線段AB有公共點,則﹣≤k<2.綜上,滿足條件的k的取值范圍是2<k≤1或﹣≤k<2;(1)過C點作AB的平行線,交y軸于點P,此時△ABP與△ABC是同底等高的兩個三角形,所以面積相等.設直線CP的解析式為y=﹣x+n,∵C點坐標是(1,1),∴1=﹣+n,解得n=,∴直線CP的解析式為y=﹣x+,∴P(2,).設直線AB:y=﹣x+交y軸于點D,則D(2,).將直線AB向上平移﹣=2個單位,得到直線y=﹣x+,與y軸交于點P′,此時△ABP′與△ABP是同底等高的兩個三角形,所以△ABP與△ABC面積相等,易求P′(2,).綜上所述,所求P點坐標是(2,)或(2,).故答案為(2,)或(2,).【點睛】本題考查了三角形的面積,待定系數(shù)法求一次函數(shù)的解析式,一次函數(shù)圖象與系數(shù)的關系,一次函數(shù)圖象上點的坐標特征,直線平移的規(guī)律等知識,直線較強,難度適中.利用數(shù)形結合、分類討論是解題的關鍵.25、(1)①全等,見解析;②點C(1,0);(2)1.【解析】

(1)①先根據(jù)等邊三角形的性質(zhì)得∠OBA=∠CBD=10°,OB=BA,BC=BD,則∠OBC=∠ABD,然后可根據(jù)“SAS”可判定△OBC≌△ABD;

②由全等三角形的性質(zhì)可得∠BAD=∠BOC=∠OAB=10°,可得∠EAO=10°,可求AE=2OA=4,即可求點C坐標;

(2)由題意可得點E是定點,點D在AE上移動,點D所走過的路徑的長度=O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論