




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)武漢華夏理工學(xué)院
《企業(yè)形象設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺在文物保護(hù)和修復(fù)中的應(yīng)用可以幫助記錄和分析文物的狀態(tài)。假設(shè)要對(duì)一件古老的雕塑進(jìn)行數(shù)字化保存和修復(fù)建議。以下關(guān)于計(jì)算機(jī)視覺在文物保護(hù)中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過三維掃描技術(shù)獲取文物的精確形狀和表面細(xì)節(jié)B.能夠?qū)ξ奈锏念伾图y理進(jìn)行分析,為修復(fù)提供參考C.計(jì)算機(jī)視覺可以完全替代人工的文物修復(fù)工作,保證修復(fù)的質(zhì)量和效果D.可以建立文物的數(shù)字檔案,方便后續(xù)的研究和展示2、目標(biāo)檢測(cè)是計(jì)算機(jī)視覺中的常見任務(wù),例如在監(jiān)控視頻中檢測(cè)行人或車輛。假設(shè)我們要開發(fā)一個(gè)目標(biāo)檢測(cè)系統(tǒng),以下關(guān)于目標(biāo)檢測(cè)算法的描述,哪一項(xiàng)是不正確的?()A.基于區(qū)域建議的方法,如R-CNN系列算法,通過生成候選區(qū)域并對(duì)其進(jìn)行分類和定位來實(shí)現(xiàn)目標(biāo)檢測(cè)B.一階段目標(biāo)檢測(cè)算法,如YOLO和SSD,直接在圖像上進(jìn)行目標(biāo)的分類和定位,速度相對(duì)較快C.目標(biāo)檢測(cè)算法的性能通常用準(zhǔn)確率、召回率和平均精度均值(mAP)等指標(biāo)來評(píng)估D.目標(biāo)檢測(cè)算法的精度和速度是相互獨(dú)立的,提高精度不會(huì)影響速度,反之亦然3、在計(jì)算機(jī)視覺的圖像分類任務(wù)中,假設(shè)要處理類別不均衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下關(guān)于處理類別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類算法,類別不均衡不會(huì)對(duì)結(jié)果產(chǎn)生明顯影響B(tài).過采樣少數(shù)類別的樣本可以增加其數(shù)量,但可能導(dǎo)致過擬合C.欠采樣多數(shù)類別的樣本能夠平衡數(shù)據(jù)集,但會(huì)丟失部分有用信息D.類別不均衡問題無法通過數(shù)據(jù)處理方法解決,只能通過改進(jìn)分類算法來應(yīng)對(duì)4、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域發(fā)揮著重要作用。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,需要識(shí)別各種交通標(biāo)志、車輛和行人。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺的描述,哪一項(xiàng)是不正確的?()A.計(jì)算機(jī)視覺可以通過攝像頭實(shí)時(shí)獲取道路信息,為車輛的決策和控制提供依據(jù)B.它能夠準(zhǔn)確識(shí)別不同光照和天氣條件下的交通對(duì)象,不受任何干擾C.深度學(xué)習(xí)算法在自動(dòng)駕駛的計(jì)算機(jī)視覺中被廣泛應(yīng)用,用于目標(biāo)檢測(cè)和語(yǔ)義分割D.計(jì)算機(jī)視覺需要與其他傳感器(如雷達(dá)、激光雷達(dá))的數(shù)據(jù)融合,以提高感知的可靠性5、計(jì)算機(jī)視覺中的特征提取是非常關(guān)鍵的一步。以下關(guān)于特征提取方法的描述,不準(zhǔn)確的是()A.傳統(tǒng)的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場(chǎng)景下仍然有效B.深度學(xué)習(xí)中的自動(dòng)特征提取能夠?qū)W習(xí)到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續(xù)的圖像分類、目標(biāo)檢測(cè)等任務(wù)的性能D.特征提取只關(guān)注圖像的局部信息,而忽略了全局信息6、假設(shè)要開發(fā)一個(gè)能夠?qū)ξ奈镞M(jìn)行數(shù)字化保護(hù)和修復(fù)的計(jì)算機(jī)視覺系統(tǒng),需要對(duì)文物的破損部分進(jìn)行準(zhǔn)確識(shí)別和重建。以下哪種技術(shù)在文物修復(fù)方面可能具有應(yīng)用潛力?()A.圖像修復(fù)算法B.三維重建技術(shù)C.虛擬增強(qiáng)現(xiàn)實(shí)技術(shù)D.以上都是7、在計(jì)算機(jī)視覺的醫(yī)學(xué)圖像分析中,例如對(duì)腫瘤的檢測(cè)和分割。假設(shè)醫(yī)學(xué)圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預(yù)處理方法可能有助于提高后續(xù)分析的準(zhǔn)確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)8、圖像分類是計(jì)算機(jī)視覺的基本任務(wù)之一。假設(shè)要對(duì)大量的動(dòng)物圖像進(jìn)行分類,將其分為貓、狗、兔子等類別。在進(jìn)行圖像分類時(shí),以下關(guān)于特征提取的描述,正確的是:()A.手工設(shè)計(jì)的特征,如顏色直方圖、紋理特征等,總是比自動(dòng)學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動(dòng)學(xué)習(xí)到具有判別性的圖像特征,無需人工干預(yù)C.特征提取的好壞對(duì)圖像分類的結(jié)果影響不大,主要取決于分類器的性能D.為了提高分類準(zhǔn)確率,應(yīng)該盡可能多地提取圖像的各種特征,而不考慮特征的冗余性9、計(jì)算機(jī)視覺中的醫(yī)學(xué)圖像分析具有重要的臨床應(yīng)用價(jià)值。假設(shè)要從一組X光片中檢測(cè)出病變區(qū)域,同時(shí)要區(qū)分不同類型的病變。以下哪種技術(shù)和方法在醫(yī)學(xué)圖像分析中最為常用和有效?()A.形態(tài)學(xué)操作B.圖像分割與分類C.特征提取與選擇D.以上方法綜合運(yùn)用10、在計(jì)算機(jī)視覺的視頻監(jiān)控系統(tǒng)中,異常事件檢測(cè)是重要功能之一。假設(shè)要在一個(gè)倉(cāng)庫(kù)的監(jiān)控視頻中檢測(cè)出異常的人員活動(dòng)或物品移動(dòng)。以下哪種異常事件檢測(cè)方法在處理這種大規(guī)模視頻數(shù)據(jù)時(shí)能夠更有效地發(fā)現(xiàn)異常?()A.基于規(guī)則的檢測(cè)B.基于統(tǒng)計(jì)模型的檢測(cè)C.基于深度學(xué)習(xí)的檢測(cè)D.基于人工觀察的檢測(cè)11、當(dāng)處理低光照條件下拍攝的圖像時(shí),為了增強(qiáng)圖像的亮度和對(duì)比度,同時(shí)減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡(jiǎn)單地增加圖像的整體亮度值D.不進(jìn)行任何處理,保留低光照效果12、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項(xiàng)是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(jī)(MLP)架構(gòu)B.采用生成對(duì)抗網(wǎng)絡(luò)(GAN)架構(gòu),通過對(duì)抗訓(xùn)練生成高質(zhì)量圖像C.運(yùn)用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息13、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別用于分析視頻中的人體動(dòng)作。假設(shè)要識(shí)別一段舞蹈視頻中的動(dòng)作類別。以下關(guān)于動(dòng)作識(shí)別方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以基于時(shí)空特征提取的方法,捕捉動(dòng)作在時(shí)間和空間上的變化B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)適用于動(dòng)作序列的分析C.動(dòng)作識(shí)別只需要關(guān)注人體的關(guān)節(jié)位置,不需要考慮人體的整體形態(tài)D.多模態(tài)數(shù)據(jù)融合,如結(jié)合音頻和視頻信息,可以提高動(dòng)作識(shí)別的準(zhǔn)確率14、在計(jì)算機(jī)視覺的圖像去霧任務(wù)中,假設(shè)要去除一張有霧圖像中的霧氣,恢復(fù)清晰的場(chǎng)景。以下關(guān)于圖像去霧方法的描述,正確的是:()A.基于物理模型的去霧方法需要準(zhǔn)確估計(jì)霧的濃度和傳播參數(shù),否則效果不佳B.基于深度學(xué)習(xí)的去霧方法能夠自動(dòng)學(xué)習(xí)霧的特征,但對(duì)濃霧的處理能力有限C.圖像去霧后,顏色和對(duì)比度會(huì)發(fā)生嚴(yán)重失真,影響視覺效果D.所有的圖像去霧方法都能夠在各種復(fù)雜的霧天條件下取得理想的效果15、對(duì)于圖像的語(yǔ)義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場(chǎng)景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會(huì)。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語(yǔ)義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語(yǔ)義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對(duì)圖像進(jìn)行簡(jiǎn)單的分類,不進(jìn)行深入的語(yǔ)義分析D.隨機(jī)猜測(cè)圖像的語(yǔ)義16、在計(jì)算機(jī)視覺的應(yīng)用于農(nóng)業(yè)領(lǐng)域,例如作物監(jiān)測(cè)和病蟲害檢測(cè),需要對(duì)大量的田間圖像進(jìn)行分析。假設(shè)我們要檢測(cè)農(nóng)作物葉片上的病蟲害癥狀,以下哪種技術(shù)能夠?qū)崿F(xiàn)快速、準(zhǔn)確的檢測(cè),并且適應(yīng)不同的生長(zhǎng)階段和環(huán)境條件?()A.基于傳統(tǒng)圖像分割和特征提取的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)和分類算法,針對(duì)病蟲害特征訓(xùn)練C.基于光譜分析和顏色特征的方法D.基于機(jī)器視覺和模式識(shí)別的方法17、圖像分割是將圖像分成不同的區(qū)域或?qū)ο蟆<僭O(shè)要對(duì)醫(yī)學(xué)影像中的腫瘤區(qū)域進(jìn)行精確分割,以下關(guān)于圖像分割方法的描述,正確的是:()A.手動(dòng)分割是最準(zhǔn)確的方法,不需要借助計(jì)算機(jī)算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學(xué)影像分割問題C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)及其變體在醫(yī)學(xué)圖像分割中具有很大的潛力D.圖像分割的結(jié)果只取決于所使用的分割算法,與圖像的預(yù)處理無關(guān)18、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張不同視角拍攝的同一物體的圖像進(jìn)行對(duì)齊。以下關(guān)于圖像配準(zhǔn)方法的描述,正確的是:()A.基于特征點(diǎn)的配準(zhǔn)方法對(duì)圖像的旋轉(zhuǎn)、縮放和平移具有不變性,但特征點(diǎn)的提取容易出錯(cuò)B.基于灰度的配準(zhǔn)方法計(jì)算簡(jiǎn)單,但對(duì)光照變化和噪聲敏感C.深度學(xué)習(xí)中的自監(jiān)督學(xué)習(xí)方法在圖像配準(zhǔn)中無法學(xué)習(xí)到有效的特征表示D.圖像配準(zhǔn)的精度只取決于配準(zhǔn)算法的選擇,與圖像的質(zhì)量和特征無關(guān)19、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,目標(biāo)可能會(huì)被遮擋、變形或快速移動(dòng)。假設(shè)要跟蹤一個(gè)在人群中快速移動(dòng)的人物,以下哪種跟蹤算法可能更適合應(yīng)對(duì)這種復(fù)雜情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于均值漂移的跟蹤算法D.基于模板匹配的跟蹤算法20、在計(jì)算機(jī)視覺的視頻分析中,假設(shè)要對(duì)一段監(jiān)控視頻中的異常行為進(jìn)行檢測(cè)。以下關(guān)于特征提取的方法,哪一項(xiàng)是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級(jí)特征B.利用光流信息來捕捉物體的運(yùn)動(dòng)特征C.僅分析視頻的音頻信息,忽略圖像內(nèi)容D.結(jié)合時(shí)空特征,同時(shí)考慮空間和時(shí)間維度的信息21、在計(jì)算機(jī)視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對(duì)一組包含不同視角和縮放比例的物體圖像進(jìn)行匹配,SIFT特征的哪個(gè)特性使其在這種情況下表現(xiàn)出色?()A.對(duì)旋轉(zhuǎn)和尺度變化具有不變性B.計(jì)算速度快,效率高C.特征維度低,易于存儲(chǔ)和處理D.對(duì)光照變化不敏感22、在一個(gè)基于計(jì)算機(jī)視覺的無人駕駛系統(tǒng)中,需要對(duì)道路場(chǎng)景進(jìn)行理解和預(yù)測(cè),例如判斷前方是否有行人橫穿馬路。為了實(shí)現(xiàn)準(zhǔn)確的場(chǎng)景理解和預(yù)測(cè),以下哪種技術(shù)可能是關(guān)鍵?()A.語(yǔ)義分割B.實(shí)例分割C.場(chǎng)景圖生成D.以上都是23、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,假設(shè)要跟蹤一個(gè)在人群中移動(dòng)的物體。以下關(guān)于跟蹤算法的選擇,哪一項(xiàng)是需要著重考慮的?()A.算法對(duì)目標(biāo)外觀變化的適應(yīng)性B.算法的計(jì)算復(fù)雜度,越低越好C.算法是否能夠處理多個(gè)同時(shí)移動(dòng)的目標(biāo)D.算法在處理靜態(tài)場(chǎng)景時(shí)的性能24、在計(jì)算機(jī)視覺的圖像修復(fù)任務(wù)中,假設(shè)要填補(bǔ)圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復(fù)圖像的完整性和真實(shí)性?()A.基于擴(kuò)散的修復(fù)方法B.基于深度學(xué)習(xí)的圖像修復(fù)模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進(jìn)行修復(fù),保留圖像的缺失部分25、對(duì)于圖像的紋理分析任務(wù),假設(shè)要描述和區(qū)分不同類型的紋理,例如木紋和石紋。以下哪種方法可能更有助于準(zhǔn)確分析紋理特征?()A.基于統(tǒng)計(jì)的方法,計(jì)算紋理的灰度共生矩陣B.基于模型的方法,如馬爾可夫隨機(jī)場(chǎng)C.僅通過肉眼觀察和主觀描述紋理D.不進(jìn)行任何紋理分析,直接忽略紋理信息二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)計(jì)算機(jī)視覺中如何進(jìn)行石油管道的檢測(cè)和維護(hù)?2、(本題5分)說明計(jì)算機(jī)視覺在洪澇災(zāi)害監(jiān)測(cè)中的應(yīng)用。3、(本題5分)描述計(jì)算機(jī)視覺在考古中的應(yīng)用。4、(本題5分)解釋計(jì)算機(jī)視覺中的車牌識(shí)別技術(shù)。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)探討某城市的城市形象標(biāo)識(shí)設(shè)計(jì),研究其如何代表城市的特色、文化和發(fā)展愿景,在城市推廣和品牌建設(shè)中發(fā)揮作用。2、(本題5分)以某運(yùn)動(dòng)品牌的廣告視頻為例,分析其在畫面剪輯、音樂搭配、特效運(yùn)用等方面如何展現(xiàn)品牌的活力和運(yùn)動(dòng)精神。3、(本題5分)以一款運(yùn)動(dòng)品牌的廣告設(shè)計(jì)為例,分析其如何運(yùn)用視覺語(yǔ)言傳達(dá)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 林業(yè)生物多樣性保護(hù)與利用合同
- 智能設(shè)備維護(hù)及檢修合同書
- 材料力學(xué)教材試題及答案
- 測(cè)試結(jié)果的分析與應(yīng)用試題及答案
- 顯著提高的公路工程知識(shí)積累試題及答案
- ??苹ぴ砜荚囶}及答案
- 店面整體轉(zhuǎn)讓合同協(xié)議書
- 2025年工業(yè)互聯(lián)網(wǎng)平臺(tái)自然語(yǔ)言處理技術(shù)在工業(yè)互聯(lián)網(wǎng)平臺(tái)智能決策支持系統(tǒng)中的應(yīng)用前景
- 計(jì)算機(jī)二級(jí)MySQL數(shù)據(jù)庫(kù)優(yōu)化策略試題及答案
- 商鋪轉(zhuǎn)讓定金合同協(xié)議書
- 2023年二級(jí)教師初定職稱呈報(bào)表
- GB/T 30308-2013氟橡膠通用規(guī)范和評(píng)價(jià)方法
- GA 1517-2018金銀珠寶營(yíng)業(yè)場(chǎng)所安全防范要求
- 關(guān)建過程明細(xì)表
- 《飛翔的女武神》課件
- 胎盤早剝預(yù)案演練腳本
- 中鐵項(xiàng)目XXXX年2月份經(jīng)濟(jì)活動(dòng)分析
- 老年患者術(shù)前評(píng)估中國(guó)專家建議
- 2022年學(xué)??照{(diào)使用管理制度
- 生產(chǎn)良率系統(tǒng)統(tǒng)計(jì)表
- 代理機(jī)構(gòu)服務(wù)質(zhì)量考核評(píng)價(jià)表
評(píng)論
0/150
提交評(píng)論