2025谷歌人工智能提示詞工程白皮書-Prompt Engineering-v7_第1頁
2025谷歌人工智能提示詞工程白皮書-Prompt Engineering-v7_第2頁
2025谷歌人工智能提示詞工程白皮書-Prompt Engineering-v7_第3頁
2025谷歌人工智能提示詞工程白皮書-Prompt Engineering-v7_第4頁
2025谷歌人工智能提示詞工程白皮書-Prompt Engineering-v7_第5頁
已閱讀5頁,還剩63頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PromptEngineering

Author:LeeBoonstra

PromptEngineering

Acknowledgements

Contentcontributors

MichaelShermanYuanCao

ErickArmbrustAnantNawalgariaAntonioGulliSimoneCammel

CuratorsandEditors

AntonioGulliAnantNawalgariaGraceMollison

TechnicalWriter

JoeyHaymaker

Designer

MichaelLanning

February2025 2

Tableofcontents

Introduction 6

Promptengineering 7

LLMoutputconfiguration 8

Outputlength 8

Samplingcontrols 9

Temperature 9

Top-Kandtop-P 10

Puttingitalltogether 11

Promptingtechniques 13

Generalprompting/zeroshot 13

One-shot&few-shot 15

System,contextualandroleprompting 18

Systemprompting 19

Roleprompting 21

Contextualprompting 23

Step-backprompting 25

ChainofThought(CoT) 29

Self-consistency 32

TreeofThoughts(ToT) 36

ReAct(reason&act) 37

AutomaticPromptEngineering 40

Codeprompting 42

Promptsforwritingcode 42

Promptsforexplainingcode 44

Promptsfortranslatingcode 46

Promptsfordebuggingandreviewingcode 48

Whataboutmultimodalprompting? 54

BestPractices 54

Provideexamples 54

Designwithsimplicity 55

Bespecificabouttheoutput 56

UseInstructionsoverConstraints 56

Controlthemaxtokenlength 58

Usevariablesinprompts 58

Experimentwithinputformatsandwritingstyles 59

Forfew-shotpromptingwithclassificationtasks,mixuptheclasses 59

Adapttomodelupdates 60

Experimentwithoutputformats 60

JSONRepair 61

WorkingwithSchemas 62

Experimenttogetherwithotherpromptengineers 63

CoTBestpractices 64

Documentthevariouspromptattempts 64

Summary 66

Endnotes 68

PromptEngineering

February2025

PAGE

20

Youdon’tneedtobeadatascientistoramachinelearningengineer–everyonecanwriteaprompt.

Introduction

Whenthinkingaboutalargelanguagemodelinputandoutput,atextprompt(sometimesaccompaniedbyothermodalitiessuchasimageprompts)istheinputthemodeluses

topredictaspecificoutput.Youdon’tneedtobeadatascientistoramachinelearningengineer–everyonecanwriteaprompt.However,craftingthemosteffectivepromptcanbecomplicated.Manyaspectsofyourpromptaffectitsefficacy:themodelyouuse,themodel’strainingdata,themodelconfigurations,yourword-choice,styleandtone,structure,andcontextallmatter.Therefore,promptengineeringisaniterativeprocess.Inadequatepromptscanleadtoambiguous,inaccurateresponses,andcanhinderthemodel’sabilitytoprovidemeaningfuloutput.

WhenyouchatwiththeGeminichatbot,1youbasicallywriteprompts,howeverthiswhitepaperfocusesonwritingpromptsfortheGeminimodelwithinVertexAIorbyusingtheAPI,becausebypromptingthemodeldirectlyyouwillhaveaccesstotheconfigurationsuchastemperatureetc.

Thiswhitepaperdiscussespromptengineeringindetail.Wewilllookintothevariouspromptingtechniquestohelpyougettingstartedandsharetipsandbestpracticestobecomeapromptingexpert.Wewillalsodiscusssomeofthechallengesyoucanfacewhilecraftingprompts.

Promptengineering

RememberhowanLLMworks;it’sapredictionengine.Themodeltakessequentialtextasaninputandthenpredictswhatthefollowingtokenshouldbe,basedonthedataitwastrainedon.TheLLMisoperationalizedtodothisoverandoveragain,addingthepreviouslypredictedtokentotheendofthesequentialtextforpredictingthefollowingtoken.Thenext

tokenpredictionisbasedontherelationshipbetweenwhat’sintheprevioustokensandwhattheLLMhasseenduringitstraining.

Whenyouwriteaprompt,youareattemptingtosetuptheLLMtopredicttherightsequenceoftokens.Promptengineeringistheprocessofdesigninghigh-qualitypromptsthatguideLLMstoproduceaccurateoutputs.Thisprocessinvolvestinkeringtofindthebestprompt,optimizingpromptlength,andevaluatingaprompt’swritingstyleandstructureinrelation

tothetask.InthecontextofnaturallanguageprocessingandLLMs,apromptisaninputprovidedtothemodeltogeneratearesponseorprediction.

Thesepromptscanbeusedtoachievevariouskindsofunderstandingandgenerationtaskssuchastextsummarization,informationextraction,questionandanswering,textclassification,languageorcodetranslation,codegeneration,andcodedocumentationorreasoning.

PleasefeelfreetorefertoGoogle’spromptingguides2,3withsimpleandeffectivepromptingexamples.

Whenpromptengineering,youwillstartbychoosingamodel.Promptsmightneedtobeoptimizedforyourspecificmodel,regardlessofwhetheryouuseGeminilanguagemodelsinVertexAI,GPT,Claude,oranopensourcemodellikeGemmaorLLaMA.

Besidestheprompt,youwillalsoneedtotinkerwiththevariousconfigurationsofaLLM.

LLMoutputconfiguration

Onceyouchooseyourmodelyouwillneedtofigureoutthemodelconfiguration.MostLLMscomewithvariousconfigurationoptionsthatcontroltheLLM’soutput.Effectivepromptengineeringrequiressettingtheseconfigurationsoptimallyforyourtask.

Outputlength

Animportantconfigurationsettingisthenumberoftokenstogenerateinaresponse.GeneratingmoretokensrequiresmorecomputationfromtheLLM,leadingtohigherenergyconsumption,potentiallyslowerresponsetimes,andhighercosts.

ReducingtheoutputlengthoftheLLMdoesn’tcausetheLLMtobecomemorestylisticallyortextuallysuccinctintheoutputitcreates,itjustcausestheLLMtostoppredictingmoretokensoncethelimitisreached.Ifyourneedsrequireashortoutputlength,you’llalsopossiblyneedtoengineeryourprompttoaccommodate.

OutputlengthrestrictionisespeciallyimportantforsomeLLMpromptingtechniques,likeReAct,wheretheLLMwillkeepemittinguselesstokensaftertheresponseyouwant.

Beaware,generatingmoretokensrequiresmorecomputationfromtheLLM,leadingtohigherenergyconsumptionandpotentiallyslowerresponsetimes,whichleadstohighercosts.

Samplingcontrols

LLMsdonotformallypredictasingletoken.Rather,LLMspredictprobabilitiesforwhatthenexttokencouldbe,witheachtokenintheLLM’svocabularygettingaprobability.Thosetokenprobabilitiesarethensampledtodeterminewhatthenextproducedtokenwillbe.

Temperature,top-K,andtop-Parethemostcommonconfigurationsettingsthatdeterminehowpredictedtokenprobabilitiesareprocessedtochooseasingleoutputtoken.

Temperature

Temperaturecontrolsthedegreeofrandomnessintokenselection.Lowertemperaturesaregoodforpromptsthatexpectamoredeterministicresponse,whilehighertemperaturescanleadtomorediverseorunexpectedresults.Atemperatureof0(greedydecoding)is

deterministic:thehighestprobabilitytokenisalwaysselected(thoughnotethatiftwotokenshavethesamehighestpredictedprobability,dependingonhowtiebreakingisimplementedyoumaynotalwaysgetthesameoutputwithtemperature0).

Temperaturesclosetothemaxtendtocreatemorerandomoutput.Andastemperaturegetshigherandhigher,alltokensbecomeequallylikelytobethenextpredictedtoken.

TheGeminitemperaturecontrolcanbeunderstoodinasimilarwaytothesoftmaxfunctionusedinmachinelearning.Alowtemperaturesettingmirrorsalowsoftmaxtemperature(T),emphasizingasingle,preferredtemperaturewithhighcertainty.AhigherGeminitemperaturesettingislikeahighsoftmaxtemperature,makingawiderrangeoftemperaturesaround

theselectedsettingmoreacceptable.Thisincreaseduncertaintyaccommodatesscenarioswherearigid,precisetemperaturemaynotbeessentiallikeforexamplewhenexperimentingwithcreativeoutputs.

Top-Kandtop-P

Top-Kandtop-P(alsoknownasnucleussampling)4aretwosamplingsettingsusedinLLMstorestrictthepredictednexttokentocomefromtokenswiththetoppredictedprobabilities.Liketemperature,thesesamplingsettingscontroltherandomnessanddiversityofgeneratedtext.

Top-KsamplingselectsthetopKmostlikelytokensfromthemodel’spredicteddistribution.Thehighertop-K,themorecreativeandvariedthemodel’soutput;thelowertop-K,themorerestiveandfactualthemodel’soutput.Atop-Kof1isequivalenttogreedydecoding.

Top-Psamplingselectsthetoptokenswhosecumulativeprobabilitydoesnotexceedacertainvalue(P).ValuesforPrangefrom0(greedydecoding)to1(alltokensintheLLM’svocabulary).

Thebestwaytochoosebetweentop-Kandtop-Pistoexperimentwithbothmethods(orbothtogether)andseewhichoneproducestheresultsyouarelookingfor.

Puttingitalltogether

Choosingbetweentop-K,top-P,temperature,andthenumberoftokenstogenerate,dependsonthespecificapplicationanddesiredoutcome,andthesettingsallimpactoneanother.It’salsoimportanttomakesureyouunderstandhowyourchosenmodelcombinesthedifferentsamplingsettingstogether.

Iftemperature,top-K,andtop-Pareallavailable(asinVertexStudio),tokensthatmeetboththetop-Kandtop-Pcriteriaarecandidatesforthenextpredictedtoken,andthen

temperatureisappliedtosamplefromthetokensthatpassedthetop-Kandtop-Pcriteria.Ifonlytop-Kortop-Pisavailable,thebehavioristhesamebutonlytheonetop-KorPsettingisused.

Iftemperatureisnotavailable,whatevertokensmeetthetop-Kand/ortop-Pcriteriaarethenrandomlyselectedfromtoproduceasinglenextpredictedtoken.

Atextremesettingsofonesamplingconfigurationvalue,thatonesamplingsettingeithercancelsoutotherconfigurationsettingsorbecomesirrelevant.

Ifyousettemperatureto0,top-Kandtop-Pbecomeirrelevant–themostprobabletokenbecomesthenexttokenpredicted.Ifyousettemperatureextremelyhigh(above1–generallyintothe10s),temperaturebecomesirrelevantandwhatevertokensmake

itthroughthetop-Kand/ortop-Pcriteriaarethenrandomlysampledtochooseanextpredictedtoken.

Ifyousettop-Kto1,temperatureandtop-Pbecomeirrelevant.Onlyonetokenpassesthetop-Kcriteria,andthattokenisthenextpredictedtoken.Ifyousettop-Kextremelyhigh,liketothesizeoftheLLM’svocabulary,anytokenwithanonzeroprobabilityofbeingthenexttokenwillmeetthetop-Kcriteriaandnoneareselectedout.

Ifyousettop-Pto0(oraverysmallvalue),mostLLMsamplingimplementationswillthenonlyconsiderthemostprobabletokentomeetthetop-Pcriteria,makingtemperatureandtop-Kirrelevant.Ifyousettop-Pto1,anytokenwithanonzeroprobabilityofbeingthenexttokenwillmeetthetop-Pcriteria,andnoneareselectedout.

Asageneralstartingpoint,atemperatureof.2,top-Pof.95,andtop-Kof30willgiveyourelativelycoherentresultsthatcanbecreativebutnotexcessivelyso.Ifyouwantespeciallycreativeresults,trystartingwithatemperatureof.9,top-Pof.99,andtop-Kof40.Andifyouwantlesscreativeresults,trystartingwithatemperatureof.1,top-Pof.9,andtop-Kof20.

Finally,ifyourtaskalwayshasasinglecorrectanswer(e.g.,answeringamathproblem),startwithatemperatureof0.

NOTE:Withmorefreedom(highertemperature,top-K,top-P,andoutputtokens),theLLMmightgeneratetextthatislessrelevant.

WARNING:Haveyoueverseenaresponseendingwithalargeamountoffillerwords?Thisisalsoknownasthe"repetitionloopbug",whichisacommonissueinLargeLanguageModelswherethemodelgetsstuckinacycle,repeatedlygeneratingthesame(filler)word,phrase,orsentencestructure,oftenexacerbatedbyinappropriatetemperatureandtop-k/

top-psettings.Thiscanoccuratbothlowandhightemperaturesettings,thoughfordifferentreasons.Atlowtemperatures,themodelbecomesoverlydeterministic,stickingrigidlytothehighestprobabilitypath,whichcanleadtoaloopifthatpathrevisitspreviouslygeneratedtext.Conversely,athightemperatures,themodel'soutputbecomesexcessivelyrandom,increasingtheprobabilitythatarandomlychosenwordorphrasewill,bychance,leadbacktoapriorstate,creatingaloopduetothevastnumberofavailableoptions.Inbothcases,themodel'ssamplingprocessgets"stuck,"resultinginmonotonousandunhelpfuloutputuntiltheoutputwindowisfilled.Solvingthisoftenrequirescarefultinkeringwithtemperatureandtop-k/top-pvaluestofindtheoptimalbalancebetweendeterminismandrandomness.

Promptingtechniques

LLMsaretunedtofollowinstructionsandaretrainedonlargeamountsofdatasotheycanunderstandapromptandgenerateananswer.ButLLMsaren’tperfect;thecleareryourprompttext,thebetteritisfortheLLMtopredictthenextlikelytext.Additionally,specifictechniquesthattakeadvantageofhowLLMsaretrainedandhowLLMsworkwillhelpyougettherelevantresultsfromLLMs

Nowthatweunderstandwhatpromptengineeringisandwhatittakes,let’sdiveintosomeexamplesofthemostimportantpromptingtechniques.

Generalprompting/zeroshot

Azero-shot5promptisthesimplesttypeofprompt.ItonlyprovidesadescriptionofataskandsometextfortheLLMtogetstartedwith.Thisinputcouldbeanything:aquestion,astartofastory,orinstructions.Thenamezero-shotstandsfor’noexamples’.

Let’suseVertexAIStudio(forLanguage)inVertexAI,6whichprovidesaplaygroundtotestprompts.InTable1,youwillseeanexamplezero-shotprompttoclassifymoviereviews.

Thetableformatasusedbelowisagreatwayofdocumentingprompts.Yourpromptswilllikelygothroughmanyiterationsbeforetheyendupinacodebase,soit’simportanttokeeptrackofyourpromptengineeringworkinadisciplined,structuredway.Moreonthistableformat,theimportanceoftrackingpromptengineeringwork,andthepromptdevelopmentprocessisintheBestPracticessectionlaterinthischapter(“Documentthevariouspromptattempts”).

Themodeltemperatureshouldbesettoalownumber,sincenocreativityisneeded,andweusethegemini-prodefaulttop-Kandtop-Pvalues,whicheffectivelydisablebothsettings(see‘LLMOutputConfiguration’above).Payattentiontothegeneratedoutput.Thewordsdisturbingandmasterpieceshouldmakethepredictionalittlemorecomplicated,asbothwordsareusedinthesamesentence.

NameGoalModel

TemperatureTop-KPrompt

1_1_movie_classification

Classifymoviereviewsaspositive,neutralornegative.gemini-pro

0.1 TokenLimit 5

N/A Top-P 1

ClassifymoviereviewsasPOSITIVE,NEUTRALorNEGATIVE.Review:"Her"isadisturbingstudyrevealingthedirectionhumanityisheadedifAIisallowedtokeepevolving,unchecked.Iwishthereweremoremovieslikethismasterpiece.Sentiment:

Output POSITIVE

Table1.Anexampleofzero-shotprompting

Whenzero-shotdoesn’twork,youcanprovidedemonstrationsorexamplesintheprompt,whichleadsto“one-shot”and“few-shot”prompting.Generalprompting/zeroshot

One-shot&few-shot

WhencreatingpromptsforAImodels,itishelpfultoprovideexamples.Theseexamplescanhelpthemodelunderstandwhatyouareaskingfor.Examplesareespeciallyusefulwhenyouwanttosteerthemodeltoacertainoutputstructureorpattern.

Aone-shotprompt,providesasingleexample,hencethenameone-shot.Theideaisthemodelhasanexampleitcanimitatetobestcompletethetask.

Afew-shotprompt7providesmultipleexamplestothemodel.Thisapproachshowsthemodelapatternthatitneedstofollow.Theideaissimilartoone-shot,butmultipleexamplesofthedesiredpatternincreasesthechancethemodelfollowsthepattern.

Thenumberofexamplesyouneedforfew-shotpromptingdependsonafewfactors,includingthecomplexityofthetask,thequalityoftheexamples,andthecapabilitiesofthegenerativeAI(genAI)modelyouareusing.Asageneralruleofthumb,youshoulduseatleastthreetofiveexamplesforfew-shotprompting.However,youmayneedtousemoreexamplesformorecomplextasks,oryoumayneedtousefewerduetotheinputlengthlimitationofyourmodel.

Table2showsafew-shotpromptexample,let’susethesamegemini-promodelconfigurationsettingsasbefore,otherthanincreasingthetokenlimittoaccommodatetheneedforalongerresponse.

Goal

ParsepizzaorderstoJSON

Prompt

Parseacustomer'spizzaorderintovalidJSON:

EXAMPLE:

Iwantasmallpizzawithcheese,tomatosauce,andpepperoni.JSONResponse:

```

{

"size":"small",

"type":"normal",

"ingredients":[["cheese","tomatosauce","peperoni"]]

}

```

Continuesnextpage...

1

Top-P

N/A

Top-K

250

TokenLimit

0.1

Temperature

gemini-pro

Model

Prompt

EXAMPLE:

CanIgetalargepizzawithtomatosauce,basilandmozzarella

{

"size":"large",

"type":"normal",

"ingredients":[["tomatosauce","bazel","mozzarella"]]

}

Now,Iwouldlikealargepizza,withthefirsthalfcheeseandmozzarella.Andtheothertomatosauce,hamandpineapple.

JSONResponse:

Output

```

{

"size":"large",

"type":"half-half",

"ingredients":[["cheese","mozzarella"],["tomatosauce","ham","pineapple"]]

}

```

Table2.Anexampleoffew-shotprompting

Whenyouchooseexamplesforyourprompt,useexamplesthatarerelevanttothetaskyouwanttoperform.Theexamplesshouldbediverse,ofhighquality,andwellwritten.Onesmallmistakecanconfusethemodelandwillresultinundesiredoutput.

Ifyouaretryingtogenerateoutputthatisrobusttoavarietyofinputs,thenitisimportanttoincludeedgecasesinyourexamples.Edgecasesareinputsthatareunusualorunexpected,butthatthemodelshouldstillbeabletohandle.

System,contextualandroleprompting

System,contextualandrolepromptingarealltechniquesusedtoguidehowLLMsgeneratetext,buttheyfocusondifferentaspects:

Systempromptingsetstheoverallcontextandpurposeforthelanguagemodel.Itdefinesthe‘bigpicture’ofwhatthemodelshouldbedoing,liketranslatingalanguage,classifyingareviewetc.

Contextualpromptingprovidesspecificdetailsorbackgroundinformationrelevanttothecurrentconversationortask.Ithelpsthemodeltounderstandthenuancesofwhat’sbeingaskedandtailortheresponseaccordingly.

Rolepromptingassignsaspecificcharacteroridentityforthelanguagemodeltoadopt.Thishelpsthemodelgenerateresponsesthatareconsistentwiththeassignedroleanditsassociatedknowledgeandbehavior.

Therecanbeconsiderableoverlapbetweensystem,contextual,androleprompting.E.g.apromptthatassignsaroletothesystem,canalsohaveacontext.

However,eachtypeofpromptservesaslightlydifferentprimarypurpose:

Systemprompt:Definesthemodel’sfundamentalcapabilitiesandoverarchingpurpose.

Contextualprompt:Providesimmediate,task-specificinformationtoguidetheresponse.It’shighlyspecifictothecurrenttaskorinput,whichisdynamic.

Roleprompt:Framesthemodel’soutputstyleandvoice.Itaddsalayerofspecificityandpersonality.

Distinguishingbetweensystem,contextual,androlepromptsprovidesaframeworkfordesigningpromptswithclearintent,allowingforflexiblecombinationsandmakingiteasiertoanalyzehoweachprompttypeinfluencesthelanguagemodel’soutput.

Let’sdiveintothesethreedifferentkindsofprompts.

Systemprompting

Table3containsasystemprompt,whereIspecifyadditionalinformationonhowtoreturntheoutput.Iincreasedthetemperaturetogetahighercreativitylevel,andIspecifiedahighertokenlimit.However,becauseofmyclearinstructiononhowtoreturntheoutputthemodeldidn’treturnextratext.

Goal

Classifymoviereviewsaspositive,neutralornegative.

Output

NEGATIVE

Classifymoviereviewsaspositive,neutralornegative.Onlyreturnthelabelinuppercase.

Review:"Her"isadisturbingstudyrevealingthedirectionhumanityisheadedifAIisallowedtokeepevolving,unchecked.It'ssodisturbingIcouldn'twatchit.

Sentiment:

Prompt

0.8

Top-P

40

Top-K

5

TokenLimit

1

Temperature

gemini-pro

Model

Table3.Anexampleofsystemprompting

Systempromptscanbeusefulforgeneratingoutputthatmeetsspecificrequirements.Thename‘systemprompt’actuallystandsfor‘providinganadditionaltasktothesystem’.Forexample,youcoulduseasystemprompttogenerateacodesnippetthatiscompatiblewithaspecificprogramminglanguage,oryoucoulduseasystemprompttoreturnacertainstructure.HavealookintoTable4,whereIreturntheoutputinJSONformat.

Goal

Classifymoviereviewsaspositive,neutralornegative,returnJSON.

Output

```

{

"movie_reviews":[

{

"sentiment":"NEGATIVE","name":"Her"

}

]

}

```

Classifymoviereviewsaspositive,neutralornegative.ReturnvalidJSON:

Review:"Her"isadisturbingstudyrevealingthedirectionhumanityisheadedifAIisallowedtokeepevolving,unchecked.It'ssodisturbingIcouldn'twatchit.

Schema:

```MOVIE:

{

"sentiment":String"POSITIVE"|"NEGATIVE"|"NEUTRAL","name":String

}

MOVIEREVIEWS:

{

"movie_reviews":[MOVIE]

}

```

JSONResponse:

Prompt

0.8

Top-P

40

Top-K

1024

TokenLimit

1

Temperature

gemini-pro

Model

Table4.AnexampleofsystempromptingwithJSONformat

TherearesomebenefitsinreturningJSONobjectsfromapromptthatextractsdata.Inareal-worldapplicationIdon’tneedtomanuallycreatethisJSONformat,Icanalready

returnthedatainasortedorder(veryhandywhenworkingwithdatetimeobjects),butmostimportantly,bypromptingforaJSONformatitforcesthemodeltocreateastructureandlimithallucinations.

Systempromptscanalsobereallyusefulforsafetyandtoxicity.Tocontroltheoutput,simplyaddanadditionallinetoyourpromptlike:‘Youshouldberespectfulinyouranswer.’.

Roleprompting

RolepromptingisatechniqueinpromptengineeringthatinvolvesassigningaspecificroletothegenAImodel.Thiscanhelpthemodeltogeneratemorerelevantandinformativeoutput,asthemodelcancraftitsresponsestothespecificrolethatithasbeenassigned.

Forexample,youcouldrolepromptagenAImodeltobeabookeditor,akindergartenteacher,oramotivationalspeaker.Oncethemodelhasbeenassignedarole,youcanthengiveitpromptsthatarespecifictothatrole.Forexample,youcouldpromptateachertocreatealessonplanthattheycanthenreview.HavealookintoTable5,wherethemodeltakestheroleofatravelguide.

GoalModel

TemperatureTop-KPrompt

Actastravelguideandprovide3travelsuggestionsgemini-pro

1 TokenLimit 1024

40 Top-P 0.8

Iwantyoutoactasatravelguide.Iwillwritetoyouaboutmylocationandyouwillsuggest3placestovisitnearme.Insomecases,IwillalsogiveyouthetypeofplacesIwillvisit.

Mysuggestion:"IaminAmsterdamandIwanttovisitonlymuseums."

TravelSuggestions:

Output

Rijksmuseum:World-renownedmuseum,knownforDutchmasterpieceslikeRembrandt’s“TheNightWatch.”Don’tmisstheincrediblecollectionofpaintingsandartifactsshowcasingDutchartandhistory.

VanGoghMuseum:ImmerseyourselfinthecaptivatingworksofVincentvanGogh.Themuseumhousesthelargestcollectionofhispaintingsanddrawings,including“TheStarryNight”and“Sunflowers.”

StedelijkMuseumAmsterdam:Discovermodernandcontemporaryartfromaroundtheworld.Themuseum’scollectionincludesworksbyPicasso,Kandinsky,andRietveld,housedinastrikingmodernbuilding.

Table5.Anexampleofroleprompting

Theaboveexampleshowsanexampleoftakingtheroleofatravelagent.Whenyouwouldchangetheroletoateacherofgeography,youwouldnoticethatyouwillreceiveadifferentresponse.

DefiningaroleperspectiveforanAImodelgivesitablueprintofthetone,style,andfocusedexpertiseyou’relookingfortoimprovethequality,relevance,andeffectivenessofyouroutput.

HerearesomestylesyoucanchoosefromwhichIfindeffective:

Confrontational,Descriptive,Direct,Formal,Humorous,Influential,Informal,Inspirational,Persuasive

Let’schangeourpromptinTable6toincludeahumorousandinspirationalstyle.

Prompt

Iwantyoutoactasatravelguide.Iwillwritetoyouaboutmylocationandyouwillsuggest3placestovisitnearmeinahumorousstyle.

Mysuggestion:"IaminManhattan."TravelSuggestions:

Output

BeholdtheEmpireStateofMind:AscendtothedizzyingheightsoftheEmpireStateBuildingandbaskinthegloryofManhattan'sskyline.PreparetofeellikeKingKongatoptheBigApple,minusthegiantape-sizedbanana.

GetArtsy-FartsyatMoMA:UnleashyourinnerartaficionadoattheMuseumofModernArt(MoMA).Gazeuponmasterpiecesthatwillboggleyour

mindandmakeyouquestionwhetheryourstick-figuredrawingshaveanyartisticmerit.

Shop‘TilYouDroponFifthAvenue:IndulgeinsomeretailtherapyontheiconicFifthAvenue.Braceyourselfforstickershockasyouwindow-shop(oractuallyshop)atdesignerboutiquesthatwillmakeyourwalletcry.Buthey,you’reinManhattan,soyoumightaswellembracethefabulousness!

Table6.Anexampleofrolepromptingwithahumoroustoneandstyle

Contextualprompting

Byprovidingcontextualprompts,youcanhelpensurethatyourAIinteractionsareasseamlessandefficientaspossible.Themodelwillbeabletomorequicklyunderstandyourrequestandbeabletogeneratemoreaccurateandrelevantresponses,asyoucanseeintheexampleofTable7.

GoalModel

TemperatureTop-KPrompt

Output

Suggestarticlesforablogaboutretrogamesgemini-pro

1 TokenLimit 1024

40 Top-P 0.8

Context:Youarewritingforablogaboutretro80'sarcadevideogames.

Suggest3topicstowriteanarticleaboutwithafewlinesofdescriptionofwhatthisarticleshouldcontain.

**TheEvolutionofArcadeCabinetDesign:**

Thisarticlewouldexploretheevolutionofarcadecabinetdesigns,fromtheearlywoodandmetalcabinetsofthe1970stothesleek,neon-litdesignsofthe1980sandbeyond.

**BlastFromThePast:IconicArcadeGamesofThe80’s:**

Thisarticlewouldfeatureaglimpseintothehistory,impact,andlegacyofsomeofthemosticonicandinfluentialarcadegamesofthe1980s,highlightingtheirinnovations,popularmechanics,andenduringcharm.

**TheRiseandRetroRevivalofPixelArt:**

Thisarticlewoulddelveintotheevolutionofpixelartasadefiningvisualstyleofearlyarcadegames,tracingitsroots,exploringitstechniques,anddiscussingtheresurgenceofpixelartinmoderngamesanddigitalart.

Table7.Anexampleofcontextualprom

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論