MicrogridSystemDesignControlModelingChallengesSolutions微電網(wǎng)系統(tǒng)設(shè)計(jì)控制建模挑戰(zhàn)解決方案_第1頁
MicrogridSystemDesignControlModelingChallengesSolutions微電網(wǎng)系統(tǒng)設(shè)計(jì)控制建模挑戰(zhàn)解決方案_第2頁
MicrogridSystemDesignControlModelingChallengesSolutions微電網(wǎng)系統(tǒng)設(shè)計(jì)控制建模挑戰(zhàn)解決方案_第3頁
MicrogridSystemDesignControlModelingChallengesSolutions微電網(wǎng)系統(tǒng)設(shè)計(jì)控制建模挑戰(zhàn)解決方案_第4頁
MicrogridSystemDesignControlModelingChallengesSolutions微電網(wǎng)系統(tǒng)設(shè)計(jì)控制建模挑戰(zhàn)解決方案_第5頁
已閱讀5頁,還剩74頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

?

SEL

2019MicrogridSystem

Design,

Control,

andModeling

Challenges

and

SolutionsScott

MansonSEL

ES

Technology

DirectorAgendaExample

ProjectsChallengesDesign

PrinciplesReconnectionSeamless

IslandingFrequency

ResilienceVisualizationModellingWhat

isNext?MicrogridExamplesPowerMAXTechnologyTypical

CustomerSystem

SizeUtilitiesBulkElectricPowerTransmission

&

Generation>1GWIndustrial

PowerManagementOil

&Gas,

HeavyIndustries>

100

MWCommercialMicrogridsCommunities,

Universities>10MWGarrison

MicrogridsFixed

Military

Installations<10MWMobileMicrogridsDisaster

Relief,ForwardOperating

Bases<

0.5

MWPowerMAX?

System

Family

TreePOWERMAX?

Experience

UncontestedOver

28,000

MW

in

Service

WorldwideHow

Others

Use

SEL

Equipment

forMicrogrids

andDERsDo

it

yourselfSegmentSimpleMicrogridsSimple

DER

PCC

InterconnectionTechnologyRelaysRelays,

RTACS

+

Grid

connect

libraryProject

FundinganyIndependent

power

producers

orUtilitiesCustomer

ExamplesEntergyUtilties

XM

(Columbia)

Southerncompanies,

Also

Energy,

New

YorkPower

Authority

with

Tesla

batteriesApproximate

ProjectCost$5K$20KApproximate

ProjectSize<

10MW<100MWES

officeLocal

OfficeLocal

OfficePowerMAX?

for

Utilities

is

Purpose

Built

forGigawatt

Scale

GenerationPowerMAX?

for

IndustrialsDesigned

for

Heavy

Industrial

CustomersPowerMAX?

for

Commercial

CustomersAward

Winning

Controls

for

Complex

Grids

>

10MWParis

IslandPowerMAX?

GarrisonAwarded

to

Ameresco

via

ESPCSEL

PowerMAX

being

commissioned

now“This

is

mostcomprehensiveseamlesslyintegrated

DoDProject”

-

AmerescoPowerMAX?

Mobile

TechnologyInteroperable,

Simple

solution

for

<0.5MW

MicrogridsRed

CrossFEMAPrivate

DisasterReliefForwardOperating

Base(FOBB)LoadsLoadsLoadsLoadsLoadsLoads30

kW

Taylor30

kW

Gillette100kW

CAT60

kW

TQGA4MicrogridChallengesProtective

Relays

Are

MandatoryProtect

Assets,

Environment,

andPeopleNot

ResilientPower

System

Split

Into

Six

IslandsCollapses5:256:257:258:259:2510:2551TimeFrequency50.5Island

150Island

249.549Island

4Island

3Island

6Island

5CR68SM32ResilientSame

Six

Islands

With

Mature

Microgrid

Technology34:3135:3138:3139:315150.55049.54936:31

Time

37:31FrequencyFrequency

and

Voltage

are

Resilience

Metrics1

/

Frequency

(Hz)tFrequency

(Hz)Voltage

(V)Voltage

(V)2V63RotatingGeneratorSetsGeneration

SheddingLoad

SheddingAllowableOperation651.3

1.20.8

0.75755InverterTechnologyEngines

Cannot

Respond

InstantaneouslyFrequency

Decay

Is

Extraction

ofKinetic

Energy

From

Inertia9796929162616059585720051510Time

(s)ElectricPower98

63Mechanical

PowerSpeed

=

FrequencyNote

Lag

in

ResponsePower

95(MW)

9493System

inertia

(H)is

J

?

(kg

?m2)

in

terms

of

puSystem

InertiaJ?

(kg?

m2

)MVAH

secondsFrequency

decay

is

driven

by

power

disparity

and

inertiadf

Pdisparitydt

2HfLoad

Composition

Affects

Frequency

Stability0204060Time

(s)VSD

and

Induction

Motor

DominatedInduction

Motor

Dominated80

100VSD

DominatedFrequency

60(Hz)5070Noninertial

EffectsElectric

loads

increase

transientsMotors

reduce

transientsLoadsShort-TermCapacity

LimitInverter-BasedGenerationQPRotating

GeneratorsLong-Term

Capacity

LimitQPDistributed

Energy

Resource

(DER)Inverter-Based

GenerationHasLimitedOverloadCapacityLoad

Balancing

Must

Happen

Faster

WithDER

Inverter-Based

GenerationPower,FrequencyTimeRotating

Generation

PowerPowerFrequencyLoadInverter-Based

PowerRotating

Generation

FrequencyInverter-Based

FrequencyQ

(MVAR)TurbineCapabilityAllowableOperationalRegionQ

(MVAR)P

(MW)Short-TermCapacity

LimitLong-Term

Capacity

LimitP

(MW)Operator-EnteredRegulation

LimitsGeneratorCapabilityCurveAllowableOperationalRegionController

Must

Understand

DER

CapabilitytIRelayDERFaultlevelsGroundingDirectionsImpedancesProtection

Must

Adapt

toChanging

Fault

Conditions20,00020,0002,0002,000CurrentLimitVtIttItDER

Inverter

Behavior

IsSubject

to

Human

PreferenceInverterA Inverter

BFault

VDER

Inverter

Behavior

IsSubject

to

Human

Error4-QuadrantBatteryPower-OnlyBatterySoftwareEngineerMistakeSoftwareEngineerMistake1.2Q1.0PQPQPQPDER

Inverter

Phase-Locked

Loops

(PLLs)Fail

When

You

Need

Them

MostAC+DC–VdVq

Mod.MeasureFrequency∫dtMeasured

Frequency“Best

Guess”FrequencyIPWMABCDQABC~60

Hz4kHzPLLDesignSafeReliable

(resilient)EconomicalRequirements

for

TechnologyMultifunction

protectionRemote

I/OMeteringPower

quality

monitoringProgrammable

logiccontroller

functionIEC

61850

complianceMIRRORED

BITS?

high-speedcommunicationsContinuous

self-diagnosticsSynchrophasorsDC

battery

monitoringFront-panel

interface

thatreplaces

all

control

switchesand

pushbuttonsRelays

Are

the

Foundationof

MicrogridControlsSCADADNP3IEC

61850GOOSEPCCGeneratorSEL-751SEL-751SEL-751SolarWindSEL-751PCC

RelayDERRelaysDistributedEnergyResources(DERs)Relays

Provide

Distributed

Protectionand

Control

for

SmallMicrogridsProtectionGovernor

and

Exciter

DispatchInverter

DispatchLoad

SharingVoltage

and

Frequency

RegulationReconnectionLoad

SheddingShort-

and

Open-Circuit

ProtectionIEEE

CompliancePower

and

Power

Factor

ControlSEL-3530-4SEL-849SEL-751SEL-451OtherIEDVisualization

and

Diagnostic

SystemSEL

POWERMAXControl

SystemsSubstation

Front-End

Processor

(FEP)SubstationEthernet

Communications

NetworkSEL-3555RTACCentralized

Controllers

Communicate

to

RelaysPower

Management

System

LANSEL-3555RTACSEL-2440

DPACSEL-751A

RelaysSEL-2730MSEL-2730MRTACSEL-3530RTACSEL-3530Remote

I/OBackup

FEPSEL-2730MSEL-2730MSubstationHMI

ServersGatewaysControllersSEL-3555RTACRTACSEL-3530Primary

FEPRelay-BasedControlsScale

to

AnySize

PowerSystem1201008060402001101001,000

10,000

100,000 1,000,000

10,000,000Size

of

Islanded

Grid

(kW)Community

Microgrids Industrial

MicrogridsBulk

ElectricPower

SystemsControlFunctionalityin

Relay(%)Use

Relays

for

Small

Grids;Use

Relays

and

Controllers

for

Larger

GridsDERDERDERPCCPOIPOIPOIDistributed

EnergyResource(DER)

is

a

catch-all

name

fortraditionalandintermittentsourcesIEEE

1547IEEE

1547IEEE

2030.7

ControlIEEE

2030.8

TestingPOI

orPCCDERRequirementSequence

of

Events

(SOE)Event

oscillographyContinuous

data

collectionSEL

Relay

SolutionSEREvent

recordsSYNCHROWAVE

CentralIEEE

2030.8-2018

RequiresThree

Types

of

Mandatory

Data

CollectionWhich

are

in

SEL

relays!ReconnectionMacrogridMicrogrid

V,

SlipDispatchPCCRelayDERRelayδ

(slip)?δ?VVMACROGRIDVMICROGRIDPCC

Reconnection

Is

a

Relay

Function15202545–1,0001,000500–5000Current(A)30Cycles354015203035–1,0001,000500–5000Current(A)25CyclesSynchronizationDone

WrongSynchronizationDone

RightSeamless

IslandingPCC

Disconnection

Is

Protective

Relay

FunctionLoadsPCC6551525455535CyclesRela–y5,0000Loads

–5005,0005000Voltage(V)Current(A)RelayTripsFault

StartsPCC

Disconnection

Is

Protective

Relay

Function0.810.60.40.20SecondsFrequency(Hz)06059.559700IACurrent

350(A

rms)020VABVoltage

10(kV

rms)BreakerOpensMicrogrid

ControllerSheds

LoadLoad

CurrentInterruptedFrequencyRecovers!MacrogridDisturbanceConventionalBlackoutt60Frequency(Hz)57PCCRelayTripsPCCOpensDERTripsPCC

TripDER

TripFast

81RF

Element

ImprovesSeamless

IslandingTripMicrogrid

RegionBlackoutIEEE

1547-2003df/dt(Hz/s)Frequency(Hz)TripMicrogrid

RegionBlackoutIEEE

1547-2003df/dt(Hz/s)Frequency(Hz)MacrogridDisturbanceConventionalBlackoutt60Frequency(Hz)57PCCRelayTripsPCCOpensDERTripsPCC

TripDER

TripFast

81RF

Element

ImprovesSeamless

IslandingMicrogridSurvives81RFTripsMacrogridMicrogridLoadsLoadsLoadsLoadsPhotovoltaicand

BatterySystemCombinedHeat

andPowerDieselGeneratorPCC3PCC2PCC1Integrated

Relays

and

ControllersProvide

Resilient

Behavior59.8459.8859.9260.046059.9612,000Frequency

(Hz)16,000VAB

Voltage

(V

rms)20,000Seamless

Islanding

RequiresFast

Load

SheddingGrid-TiedOperationIslandedOperationSynchronizationSystemsAutomaticDecouplingLoadSheddingSubcycleFASTControllerRelayStatusTrip1204001101,00010,000100Quantity

of

IEDsLoad-Shed80Time

(ms)SEL

ControllersIndustrialControl

Systems1,000

Process

Control

Systems

160Make

Sure

Your

Controller

Is

up

to

the

TaskFast

and

Scalable

Architectures

Are

RequiredCentral

FEPScan

Time:

2

ms20

RelaysScan

Time:

2

ms200

RelaysScan

Time:

2

ms1,000

RelaysScan

Time:

2

msSmall

(<20

ms)ControllerScan

Time:

2

msMedium

(<30

ms)ControllerScan

Time:

2

msLarge

(<40

ms)ControllerScan

Time:

2

msSubstation

FEPScan

Time:

2

msSubstation

FEPScan

Time:

2

msContingency

Load-Shedding

Calculationwhere:n=contingency

(event)

numberm

=number

ofgenerators

insystemg

=

generatornumber,

1

throughmLn

=amount

ofload

selectedfor

n

event

(kW)Pn

=power

disparity

caused

by

nevent(kW)IRMng

=

incremental

reserve

margin

ofall

remaininggenerators

after

nevents(kW)mLn

Pn

IRMngg

1Broken

wiresDC

batteryfailuresBreaker

contact

failuresGovernor

problemsFuel

or

air

problemsImproper

maintenanceIncomplete

commissioningInertial

Based

Load-Shedding

SystemsOperate

when

a

Contingency

Load

SheddingSystem

is

out

of

serviceL3F2F2L2F1L1F1F1MacrogridComplex

GridInertia

and

Load

Composition

CompensatedLoad

Shedding

Systems

stop

Blackouts60585759FTNormal

OperationLoadShedTraditional

FailureInertia-CompensatedSuccessBlackoutLoad

Shed

~

H

?

DFDT=

8

?

1

=

8

MWLoad

Shed

~

H

?

DFDT=

4

?

2

=

8

MWMW

Load

to

ShedFDFDT5958<

0.542840.5

to1.084182>

1.0182162MicrogridManualFast

Load

Shedding

MakesSeamless

Islanding

PossibleFastestContingency

basedInertial

compensatedFrequency

basedOverloadSlowestFrequency

ResilienceFrequency

response

characteristic

(FRC)Major

disturbancesInverter

misoperationVoltage

and

MVAR

marginsFrequency

and

MW

marginsEconomicsWhat

Affects

Power

System

Resilience?Locked5049.449484%

DropFrequency(Hz)ABCFRC

Example

Large

OffshoreNatural

Gas

Liquefaction

PlantSudden

0.3

pu

LoadIncreaseThree

Common

FRC

VariantsLocationFRC

TypeCalculationFRCPoint

ATransient50

?

0.3

/

(50

48.7)11.5Point

BLocked

rotor(extraction

mode)50

?

0.3

/

(50

48)7.5Point

CSystem

long-term(system

droopcharacteristic)50

?

0.3

/

(50

49.4)

25Use

better

engine

and

voltage

controlsAddinertiaAdd

motor

loads

with

windageLimit

electronic

loads

with

variable

speed

drive

(VSD)UsebatteriesInclude

load

shedding

or

curtailmentInclude

generation

shedding

or

runbackSolutions

for

PoorFRCPower

System

τ2

(seconds)UtilityMicrogrid0.5–1.20.25–2.5–+

–DER

Frequency

/Droop

ControllerFrequency+

–SimplificationFrequencyDER

Frequency

/Droop

Controller

R

1

+

Sτ2

1R

1JSStep

1

Identify

Grid

Time

ConstantsHow

Much

Responsive

GenerationIs

Required

to

Ensure

Stability?Steady-State

Electrical

LoadNow100%FutureΔt 1

minuteTime

(seconds)0.5second=

IRMStep

2

Tabulate

IncrementalReserve

Margin

(IRM)RatingIRM

IRMDER(kW)(%)(kW)Photovoltaic20000Battery

(slow)1,000550Battery

(fast)1,0001001,000Steam

extraction

turbine1,20000Combined

heat

and

power9001090Gas

turbine1,50040600Diesel

generator

set1,00040400Totals6,80031.52,140Step

3

Compare

Total

IRMto

Largest

DisturbanceEventkWSmall

motor200Load

commutatedinverter

drive2,000Large

feeder5,000Small

feeder800Available

IRM2,1405049.44948Frequency(Hz)DERs

Will

TripVisualizationTime-SynchronizedConditionMonitoringLoad

SelectionScreens

TeachOperators

toDispatch

GridDifferentlySimplified

Graphics

for

Small

MicrogridsDERDispatchControlScreensSimplifiedLoad-SheddingConfigurationModelingcHIL

Modelling

Mandatoryfor

big

PowerMAX

jobsHardware-in-the-Loop(HIL)Testing

Controls

QualityMicrogrid

System

Dispatch

and

Load

Shedding PCCControlsModbus

and

ProtectionUDPHIL

System

Automation

Controller

CT,

PT,DI,

DOIEC61850

DNP3Hardware

InterfaceReal-Time

MacrogridDigital

SimulatorMicrogridMacrogridLoadsMicrogridLoads

LoadsPhotovoltaic

Combinedand

Battery Heat

andSystem

PowerLoadsDieselGeneratorPCC3PCC2PCC1Capturing

Live

System

Dynamics

EnablesEngineers

to Build

Accurate

Models56.955.456.455.954.954.4010.20.4

0.6Time

(minutes)0.8SystemResponset

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論