




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆蘇州市工業(yè)園區(qū)斜塘校中考數(shù)學(xué)最后沖刺濃縮精華卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則一次函數(shù)的圖象可能是:A. B. C. D.2.如圖,在兩個同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率是()A. B. C. D.3.如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時,tan∠OAE=,其中正確結(jié)論的個數(shù)是(
)A.1 B.2 C.3 D.44.如圖,向四個形狀不同高同為h的水瓶中注水,注滿為止.如果注水量V(升)與水深h(厘米)的函數(shù)關(guān)系圖象如圖所示,那么水瓶的形狀是()A. B. C. D.5.如圖,小剛從山腳A出發(fā),沿坡角為的山坡向上走了300米到達B點,則小剛上升了()A.米 B.米 C.米 D.米6.已知點、都在反比例函數(shù)的圖象上,則下列關(guān)系式一定正確的是()A. B. C. D.7.(3分)如圖,是按一定規(guī)律排成的三角形數(shù)陣,按圖中數(shù)陣的排列規(guī)律,第9行從左至右第5個數(shù)是()A.2 B. C.5 D.8.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°9.某公園有A、B、C、D四個入口,每個游客都是隨機從一個入口進入公園,則甲、乙兩位游客恰好從同一個入口進入公園的概率是()A. B. C. D.10.如圖,、是的切線,點在上運動,且不與,重合,是直徑.,當(dāng)時,的度數(shù)是()A. B. C. D.11.下列二次函數(shù)的圖象,不能通過函數(shù)y=3x2的圖象平移得到的是(
)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x212.第四屆濟南國際旅游節(jié)期間,全市共接待游客686000人次.將686000用科學(xué)記數(shù)法表示為()A.686×104B.68.6×105C.6.86×106D.6.86×105二、填空題:(本大題共6個小題,每小題4分,共24分.)13.高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數(shù)量記錄如下:收費出口編號通過小客車數(shù)量(輛)260330300360240在五個收費出口中,每20分鐘通過小客車數(shù)量最多的一個出口的編號是___________.14.分解因式:m2n﹣2mn+n=.15.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.16.(2017四川省攀枝花市)若關(guān)于x的分式方程無解,則實數(shù)m=_______.17.如圖,△ABC的兩條高AD,BE相交于點F,請?zhí)砑右粋€條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.18.已知關(guān)于X的一元二次方程有實數(shù)根,則m的取值范圍是____________________三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(1)解方程:x2x-3+5(2)解不等式組并把解集表示在數(shù)軸上:3x-1220.(6分)某經(jīng)銷商從市場得知如下信息:A品牌手表B品牌手表進價(元/塊)700100售價(元/塊)900160他計劃用4萬元資金一次性購進這兩種品牌手表共100塊,設(shè)該經(jīng)銷商購進A品牌手表x塊,這兩種品牌手表全部銷售完后獲得利潤為y元.試寫出y與x之間的函數(shù)關(guān)系式;若要求全部銷售完后獲得的利潤不少于1.26萬元,該經(jīng)銷商有哪幾種進貨方案;選擇哪種進貨方案,該經(jīng)銷商可獲利最大;最大利潤是多少元.21.(6分)如圖所示,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點P.(1)把△ABC繞點A旋轉(zhuǎn)到圖1,BD,CE的關(guān)系是(選填“相等”或“不相等”);簡要說明理由;(2)若AB=3,AD=5,把△ABC繞點A旋轉(zhuǎn),當(dāng)∠EAC=90°時,在圖2中作出旋轉(zhuǎn)后的圖形,PD=,簡要說明計算過程;(3)在(2)的條件下寫出旋轉(zhuǎn)過程中線段PD的最小值為,最大值為.22.(8分)先化簡,后求值:a2?a4﹣a8÷a2+(a3)2,其中a=﹣1.23.(8分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.24.(10分)如圖,二次函數(shù)的圖象與x軸交于和兩點,與y軸交于點C,一次函數(shù)的圖象過點A、C.(1)求二次函數(shù)的表達式(2)根據(jù)函數(shù)圖象直接寫出使二次函數(shù)值大于一次函數(shù)值的自變量x的取值范圍.25.(10分)如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.26.(12分)如圖,⊙O的直徑AD長為6,AB是弦,CD∥AB,∠A=30°,且CD=.(1)求∠C的度數(shù);(2)求證:BC是⊙O的切線.27.(12分)某中學(xué)課外活動小組準(zhǔn)備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊的長為x米.若平行于墻的一邊長為y米,直接寫出y與x的函數(shù)關(guān)系式及其自變量x的取值范圍.垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
由方程有兩個不相等的實數(shù)根,可得,解得,即異號,當(dāng)時,一次函數(shù)的圖象過一三四象限,當(dāng)時,一次函數(shù)的圖象過一二四象限,故答案選B.2、D【解析】
兩個同心圓被均分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,由此計算出黑色區(qū)域的面積,利用幾何概率的計算方法解答即可.【詳解】因為兩個同心圓等分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,其中黑色區(qū)域的面積占了其中的四等份,所以P(飛鏢落在黑色區(qū)域)==.故答案選:D.【點睛】本題考查了幾何概率,解題的關(guān)鍵是熟練的掌握幾何概率的相關(guān)知識點.3、C【解析】∵四邊形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE?OP;故②錯誤;在△CQF與△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF與△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正確,故選C.點睛:本題考查了相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),三角函數(shù)的定義,熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.4、D【解析】
根據(jù)一次函數(shù)的性質(zhì)結(jié)合題目中的條件解答即可.【詳解】解:由題可得,水深與注水量之間成正比例關(guān)系,∴隨著水的深度變高,需要的注水量也是均勻升高,∴水瓶的形狀是圓柱,故選:D.【點睛】此題重點考查學(xué)生對一次函數(shù)的性質(zhì)的理解,掌握一次函數(shù)的性質(zhì)是解題的關(guān)鍵.5、A【解析】
利用銳角三角函數(shù)關(guān)系即可求出小剛上升了的高度.【詳解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB?sinα=300sinα米.故選A.【點睛】此題主要考查了解直角三角形的應(yīng)用,根據(jù)題意構(gòu)造直角三角形,正確選擇銳角三角函數(shù)得出AB,BO的關(guān)系是解題關(guān)鍵.6、A【解析】分析:根據(jù)反比例函數(shù)的性質(zhì),可得答案.詳解:由題意,得k=-3,圖象位于第二象限,或第四象限,在每一象限內(nèi),y隨x的增大而增大,∵3<6,∴x1<x2<0,故選A.點睛:本題考查了反比例函數(shù),利用反比例函數(shù)的性質(zhì)是解題關(guān)鍵.7、B【解析】
根據(jù)三角形數(shù)列的特點,歸納出每一行第一個數(shù)的通用公式,即可求出第9行從左至右第5個數(shù).【詳解】根據(jù)三角形數(shù)列的特點,歸納出每n行第一個數(shù)的通用公式是,所以,第9行從左至右第5個數(shù)是=.故選B【點睛】本題主要考查歸納推理的應(yīng)用,根據(jù)每一行第一個數(shù)的取值規(guī)律,利用累加法求出第9行第五個數(shù)的數(shù)值是解決本題的關(guān)鍵,考查學(xué)生的推理能力.8、B【解析】
延長AC交DE于點F,根據(jù)所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;
②內(nèi)錯角相等,兩直線平行;③同旁內(nèi)角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內(nèi),垂直于同一直線的兩條直線互相平行.9、B【解析】
畫樹狀圖列出所有等可能結(jié)果,從中確定出甲、乙兩位游客恰好從同一個入口進入公園的結(jié)果數(shù),再利用概率公式計算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結(jié)果,其中甲、乙兩位游客恰好從同一個入口進入公園的結(jié)果有4種,所以甲、乙兩位游客恰好從同一個入口進入公園的概率為=,故選B.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.10、B【解析】
連接OB,由切線的性質(zhì)可得,由鄰補角相等和四邊形的內(nèi)角和可得,再由圓周角定理求得,然后由平行線的性質(zhì)即可求得.【詳解】解,連結(jié)OB,∵、是的切線,∴,,則,∵四邊形APBO的內(nèi)角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點睛】本題主要考查了切線的性質(zhì)、圓周角定理、平行線的性質(zhì)和四邊形的內(nèi)角和,解題的關(guān)鍵是靈活運用有關(guān)定理和性質(zhì)來分析解答.11、D【解析】分析:根據(jù)平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y(tǒng)=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y(tǒng)=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y(tǒng)=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項正確.故選D.12、D【解析】根據(jù)科學(xué)記數(shù)法的表示形式(a×10n,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù))可得:686000=6.86×105,
故選:D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、B【解析】
利用同時開放其中的兩個安全出口,20分鐘所通過的小車的數(shù)量分析對比,能求出結(jié)果.【詳解】同時開放A、E兩個安全出口,與同時開放D、E兩個安全出口,20分鐘的通過數(shù)量發(fā)現(xiàn)得到D疏散乘客比A快;同理同時開放BC與CD進行對比,可知B疏散乘客比D快;同理同時開放BC與AB進行對比,可知C疏散乘客比A快;同理同時開放DE與CD進行對比,可知E疏散乘客比C快;同理同時開放AB與AE進行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【點睛】本題考查簡單的合理推理,考查推理論證能力等基礎(chǔ)知識,考查運用求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.14、n(m﹣1)1.【解析】
先提取公因式n后,再利用完全平方公式分解即可【詳解】m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.故答案為n(m﹣1)1.15、2﹣【解析】
過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結(jié)論【詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點睛】本題考查了扇形的面積公式和長方形性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)圖形的對稱性分析,主要考查學(xué)生的計算能力.16、3或1.【解析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①當(dāng)整式方程無解時,m﹣3=0,m=3;②當(dāng)整式方程的解為分式方程的增根時,x=1,∴m﹣3=2,m=1.綜上所述:∴m的值為3或1.故答案為3或1.17、AC=BC.【解析】分析:添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點睛:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.18、m≤3且m≠2【解析】試題解析:∵一元二次方程有實數(shù)根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)x=1(2)4<x≤415【解析】
(1)先將整理方程再乘以最小公分母移項合并即可;(2)求出每個不等式的解集,根據(jù)找不等式組解集的規(guī)律找出即可.【詳解】(1)+=4,方程整理得:=4,去分母得:x﹣5=4(2x﹣3),移項合并得:7x=7,解得:x=1;經(jīng)檢驗x=1是分式方程的解;(2)解①得:x≤解②得:x>4∴不等式組的解集是4<x≤,在數(shù)軸上表示不等式組的解集為:.【點睛】本題考查了解一元二次方程組與分式方程,解題的關(guān)鍵是熟練的掌握解一元二次方程組與分式方程運算法則.20、(1)y=140x+6000;(2)三種,答案見解析;(3)選擇方案③進貨時,經(jīng)銷商可獲利最大,最大利潤是13000元.【解析】
(1)根據(jù)利潤y=(A售價﹣A進價)x+(B售價﹣B進價)×(100﹣x)列式整理即可;(2)全部銷售后利潤不少于1.26萬元得到一元一次不等式組,求出滿足題意的x的正整數(shù)值即可;(3)利用y與x的函數(shù)關(guān)系式的增減性來選擇哪種方案獲利最大,并求此時的最大利潤即可.【詳解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y與x之間的函數(shù)關(guān)系式為y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴經(jīng)銷商有以下三種進貨方案:方案A品牌(塊)B品牌(塊)①4852②4951③5050(3)∵140>0,∴y隨x的增大而增大.∴x=50時y取得最大值.又∵140×50+6000=13000,∴選擇方案③進貨時,經(jīng)銷商可獲利最大,最大利潤是13000元.【點睛】本題考查由實際問題列函數(shù)關(guān)系式;一元一次不等式的應(yīng)用;一次函數(shù)的應(yīng)用.21、(1)BD,CE的關(guān)系是相等;(2)或;(3)1,1【解析】分析:(1)依據(jù)△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,進而得到△ABD≌△ACE,可得出BD=CE;(2)分兩種情況:依據(jù)∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,進而得到PD=;依據(jù)∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,進而得出PB=,PD=BD+PB=;(3)以A為圓心,AC長為半徑畫圓,當(dāng)CE在⊙A下方與⊙A相切時,PD的值最小;當(dāng)CE在在⊙A右上方與⊙A相切時,PD的值最大.在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大小.分兩種情況進行討論,即可得到旋轉(zhuǎn)過程中線段PD的最小值以及最大值.詳解:(1)BD,CE的關(guān)系是相等.理由:∵△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案為相等.(2)作出旋轉(zhuǎn)后的圖形,若點C在AD上,如圖2所示:∵∠EAC=90°,∴CE=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴,∴PD=;若點B在AE上,如圖2所示:∵∠BAD=90°,∴Rt△ABD中,BD=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴,即,解得PB=,∴PD=BD+PB=+=,故答案為或;(3)如圖3所示,以A為圓心,AC長為半徑畫圓,當(dāng)CE在⊙A下方與⊙A相切時,PD的值最小;當(dāng)CE在在⊙A右上方與⊙A相切時,PD的值最大.如圖3所示,分兩種情況討論:在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大?。佼?dāng)小三角形旋轉(zhuǎn)到圖中△ACB的位置時,在Rt△ACE中,CE==4,在Rt△DAE中,DE=,∵四邊形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,PD=,即旋轉(zhuǎn)過程中線段PD的最小值為1;②當(dāng)小三角形旋轉(zhuǎn)到圖中△AB'C'時,可得DP'為最大值,此時,DP'=4+3=1,即旋轉(zhuǎn)過程中線段PD的最大值為1.故答案為1,1.點睛:本題屬于幾何變換綜合題,主要考查了等腰直角三角形的性質(zhì)、旋轉(zhuǎn)變換、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、圓的有關(guān)知識,解題的關(guān)鍵是靈活運用這些知識解決問題,學(xué)會分類討論的思想思考問題,學(xué)會利用圖形的特殊位置解決最值問題.22、1【解析】
先進行同底數(shù)冪的乘除以及冪的乘方運算,再合并同類項得到化簡后的式子,將a的值代入化簡后的式子計算即可.【詳解】原式=a6﹣a6+a6=a6,當(dāng)a=﹣1時,原式=1.【點睛】本題主要考查同底數(shù)冪的乘除以及冪的乘方運算法則.23、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應(yīng)用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;
(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;
(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應(yīng)用:(1)證明:如圖2,
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAE和△EAC中,
DA=EA,∠DAB=∠EAC,AB=AC,
∴△DAB≌△EAC,
(2)結(jié)論:CD=AD+BD.
理由:如圖2-1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD?cos30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∵CD=DE+EC=2DH+BD=AD+BD=.
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.
∵四邊形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等邊三角形,
∴BA=BD=BC,
∵E、C關(guān)于BM對稱,
∴BC=BE=BD=BA,F(xiàn)E=FC,
∴A、D、E、C四點共圓,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等邊三角形,
(4)∵AE=4,EC=EF=1,
∴AH=HE=2,F(xiàn)H=3,
在Rt△BHF中,∵∠BFH=30°,
∴=cos30°,
∴BF=.24、(1);(2).【解析】
(1)將和兩點代入函數(shù)解析式即可;(2)結(jié)合二次函數(shù)圖象即可.【詳解】解:(1)∵二次函數(shù)與軸交于和兩點,解得∴二次函數(shù)的表達式為.(2)由函數(shù)圖象可知,二次函數(shù)值大于一次函數(shù)值的自變量x的取值范圍是.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)與不等式,解題的關(guān)鍵是熟悉二次函數(shù)的性質(zhì).25、(1)證明見解析;(2).【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)學(xué)科普職業(yè)規(guī)劃
- 行政管理與公共關(guān)系的培訓(xùn)實踐試題及答案
- 基礎(chǔ)與進階工程經(jīng)濟試題及答案
- 2025年市政工程政策理解試題及答案
- 關(guān)鍵知識的2025年中級經(jīng)濟師試題及答案
- 文化傳媒行業(yè)考察與鑒賞題目
- 環(huán)保材料采購與綠色生產(chǎn)實踐
- 公共關(guān)系學(xué)的傳播策略試題及答案
- 工程經(jīng)濟中的收益評估試題及答案
- 食品科學(xué)與工程生產(chǎn)線操作練習(xí)題
- 2025-2030年中國溫泉特色酒店行業(yè)市場深度調(diào)研及發(fā)展趨勢與投資前景預(yù)測研究報告
- 家政合伙合同協(xié)議書
- 機械設(shè)備產(chǎn)品質(zhì)量保證承諾書范文
- 《智能安防系統(tǒng)》課件
- SL631水利水電工程單元工程施工質(zhì)量驗收標(biāo)準(zhǔn)第1部分:土石方工程
- DL∕T 5370-2017 水電水利工程施工通 用安全技術(shù)規(guī)程
- (高清版)TDT 1075-2023 光伏發(fā)電站工程項目用地控制指標(biāo)
- 液壓氣動技術(shù)課程設(shè)計報告
- 體育館專業(yè)擴聲設(shè)計方案
- 億賽通數(shù)據(jù)泄露防護(DLP)_CDG_V3.1用戶使用手冊
- 方格子漢字獨體字表
評論
0/150
提交評論