陜西工商職業(yè)學院《機器學習原理》2023-2024學年第二學期期末試卷_第1頁
陜西工商職業(yè)學院《機器學習原理》2023-2024學年第二學期期末試卷_第2頁
陜西工商職業(yè)學院《機器學習原理》2023-2024學年第二學期期末試卷_第3頁
陜西工商職業(yè)學院《機器學習原理》2023-2024學年第二學期期末試卷_第4頁
陜西工商職業(yè)學院《機器學習原理》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁陜西工商職業(yè)學院

《機器學習原理》2023-2024學年第二學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在機器學習中,強化學習是一種通過與環(huán)境交互來學習最優(yōu)策略的方法。假設(shè)一個機器人要通過強化學習來學習如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強化學習的描述,哪一項是不正確的?()A.強化學習中的智能體根據(jù)環(huán)境的反饋(獎勵或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強化學習算法,通過估計狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計算策略的梯度來更新策略參數(shù)D.強化學習不需要對環(huán)境進行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略2、在機器學習中,數(shù)據(jù)預(yù)處理是非常重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)預(yù)處理的說法中,錯誤的是:數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)歸一化、數(shù)據(jù)標準化等步驟。目的是提高數(shù)據(jù)的質(zhì)量和可用性。那么,下列關(guān)于數(shù)據(jù)預(yù)處理的說法錯誤的是()A.數(shù)據(jù)清洗可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)歸一化將數(shù)據(jù)映射到[0,1]區(qū)間,便于不同特征之間的比較C.數(shù)據(jù)標準化將數(shù)據(jù)的均值和標準差調(diào)整為特定的值D.數(shù)據(jù)預(yù)處理對模型的性能影響不大,可以忽略3、考慮一個時間序列預(yù)測問題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動平均(SARIMA)模型D.以上都可以4、在一個圖像識別任務(wù)中,數(shù)據(jù)存在類別不平衡的問題,即某些類別的樣本數(shù)量遠遠少于其他類別。以下哪種處理方法可能是有效的?()A.過采樣少數(shù)類樣本,增加其數(shù)量,但可能導(dǎo)致過擬合B.欠采樣多數(shù)類樣本,減少其數(shù)量,但可能丟失重要信息C.生成合成樣本,如使用SMOTE算法,但合成樣本的質(zhì)量難以保證D.以上方法結(jié)合使用,并結(jié)合模型調(diào)整進行優(yōu)化5、在一個深度學習模型的訓(xùn)練過程中,出現(xiàn)了梯度消失的問題。以下哪種方法可以嘗試解決這個問題?()A.使用ReLU激活函數(shù)B.增加網(wǎng)絡(luò)層數(shù)C.減小學習率D.以上方法都可能有效6、考慮在一個圖像識別任務(wù)中,需要對不同的物體進行分類,例如貓、狗、汽車等。為了提高模型的準確性和泛化能力,以下哪種數(shù)據(jù)增強技術(shù)可能是有效的()A.隨機旋轉(zhuǎn)圖像B.增加圖像的亮度C.對圖像進行模糊處理D.減小圖像的分辨率7、假設(shè)要預(yù)測一個時間序列數(shù)據(jù)中的突然變化點,以下哪種方法可能是最合適的?()A.滑動窗口分析,通過比較相鄰窗口的數(shù)據(jù)差異來檢測變化,但窗口大小選擇困難B.基于統(tǒng)計的假設(shè)檢驗,如t檢驗或方差分析,但對數(shù)據(jù)分布有要求C.變點檢測算法,如CUSUM或Pettitt檢驗,專門用于檢測變化點,但可能對噪聲敏感D.深度學習中的異常檢測模型,能夠自動學習變化模式,但需要大量數(shù)據(jù)訓(xùn)練8、在一個推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機推薦,增加推薦結(jié)果的不確定性,但可能降低相關(guān)性B.基于內(nèi)容的多樣性優(yōu)化,選擇不同類型的物品進行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結(jié)合使用,并根據(jù)用戶反饋動態(tài)調(diào)整9、在構(gòu)建一個機器學習模型時,如果數(shù)據(jù)中存在噪聲,以下哪種方法可以幫助減少噪聲的影響()A.增加正則化項B.減少訓(xùn)練輪數(shù)C.增加模型的復(fù)雜度D.以上方法都不行10、在一個強化學習場景中,智能體在探索新的策略和利用已有的經(jīng)驗之間需要進行平衡。如果智能體過于傾向于探索,可能會導(dǎo)致效率低下;如果過于傾向于利用已有經(jīng)驗,可能會錯過更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學習率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)11、某研究團隊正在開發(fā)一個用于疾病預(yù)測的機器學習模型,需要考慮模型的魯棒性和穩(wěn)定性。以下哪種方法可以用于評估模型在不同數(shù)據(jù)集和條件下的性能?()A.交叉驗證B.留一法C.自助法D.以上方法都可以12、在一個分類問題中,如果數(shù)據(jù)集中存在多個類別,且類別之間存在層次結(jié)構(gòu),以下哪種方法可以考慮這種層次結(jié)構(gòu)?()A.多分類邏輯回歸B.決策樹C.層次分類算法D.支持向量機13、在進行自動特征工程時,以下關(guān)于自動特征工程方法的描述,哪一項是不準確的?()A.基于深度學習的自動特征學習可以從原始數(shù)據(jù)中自動提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動特征工程需要大量的計算資源和時間,但可以提高特征工程的效率14、在機器學習中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通??梢允褂媒徊骝炞C技術(shù)來評估不同模型和超參數(shù)組合的性能。假設(shè)有一個分類模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗證,以下關(guān)于K的選擇,哪一項是不太合理的?()A.K=5,平衡計算成本和評估準確性B.K=2,快速得到初步的評估結(jié)果C.K=10,提供更可靠的評估D.K=n(n為樣本數(shù)量),確保每個樣本都用于驗證一次15、在監(jiān)督學習中,常見的算法有線性回歸、邏輯回歸、支持向量機等。以下關(guān)于監(jiān)督學習算法的說法中,錯誤的是:線性回歸用于預(yù)測連續(xù)值,邏輯回歸用于分類任務(wù)。支持向量機通過尋找一個最優(yōu)的超平面來分類數(shù)據(jù)。那么,下列關(guān)于監(jiān)督學習算法的說法錯誤的是()A.線性回歸的模型簡單,容易理解,但對于復(fù)雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類和多分類問題,并且可以輸出概率值C.支持向量機在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對于大規(guī)模數(shù)據(jù)集計算成本較高D.監(jiān)督學習算法的性能只取決于模型的復(fù)雜度,與數(shù)據(jù)的特征選擇無關(guān)16、機器學習在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機器學習在自然語言處理中的說法中,錯誤的是:機器學習可以用于文本分類、情感分析、機器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學習模型等。那么,下列關(guān)于機器學習在自然語言處理中的說法錯誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個詞在文檔中的重要性C.深度學習模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計算資源D.機器學習在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進一步的研究和發(fā)展17、在一個強化學習問題中,如果智能體需要與多個對手進行交互和競爭,以下哪種算法可以考慮對手的策略?()A.雙人零和博弈算法B.多智能體強化學習算法C.策略梯度算法D.以上算法都可以18、在深度學習中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用于圖像識別等領(lǐng)域。假設(shè)我們正在設(shè)計一個CNN模型,對于圖像分類任務(wù),以下哪個因素對模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經(jīng)元數(shù)量D.以上因素影響都不大19、假設(shè)我們正在訓(xùn)練一個神經(jīng)網(wǎng)絡(luò)模型,發(fā)現(xiàn)模型在訓(xùn)練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳。這可能是由于以下哪種原因()A.訓(xùn)練數(shù)據(jù)量不足B.模型過于復(fù)雜,導(dǎo)致過擬合C.學習率設(shè)置過高D.以上原因都有可能20、在進行特征工程時,如果特征之間存在共線性,即一個特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關(guān)特征B.對特征進行主成分分析C.對特征進行標準化D.以上都可以二、簡答題(本大題共3個小題,共15分)1、(本題5分)說明機器學習在病理學中的樣本分析。2、(本題5分)說明機器學習中模型的超參數(shù)調(diào)優(yōu)方法。3、(本題5分)簡述在工業(yè)生產(chǎn)中,質(zhì)量控制中機器學習的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)通過語言學數(shù)據(jù)構(gòu)建語言模型和研究語言規(guī)律。2、(本題5分)運用K-Means聚類對用戶的社交網(wǎng)絡(luò)關(guān)系進行分析。3、(本題5分)通過蛋白質(zhì)組學數(shù)據(jù)研究蛋白質(zhì)的表達和功能。4、(本題5分)基于教育數(shù)據(jù)為學生提供個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論