2024屆重慶市大渡口區(qū)中考四模數(shù)學試題含解析_第1頁
2024屆重慶市大渡口區(qū)中考四模數(shù)學試題含解析_第2頁
2024屆重慶市大渡口區(qū)中考四模數(shù)學試題含解析_第3頁
2024屆重慶市大渡口區(qū)中考四模數(shù)學試題含解析_第4頁
2024屆重慶市大渡口區(qū)中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆重慶市大渡口區(qū)中考四模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.有若干個完全相同的小正方體堆成一個如圖所示幾何體,若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個數(shù)為()A.2 B.3 C.4 D.52.如圖,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半徑為3,那么下列說法正確的是()A.點B、點C都在⊙A內(nèi) B.點C在⊙A內(nèi),點B在⊙A外C.點B在⊙A內(nèi),點C在⊙A外 D.點B、點C都在⊙A外3.如果一組數(shù)據(jù)6、7、x、9、5的平均數(shù)是2x,那么這組數(shù)據(jù)的方差為()A.4 B.3 C.2 D.14.下列運算正確的是()A.2a+3a=5a2B.(a3)3=a9C.a(chǎn)2?a4=a8D.a(chǎn)6÷a3=a25.《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學的重要著作,其中有一道題,原文是:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺.木長幾何?”意思是:用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺,問木頭長多少尺?可設(shè)木頭長為x尺,繩子長為y尺,則所列方程組正確的是()A. B. C. D.6.甲、乙兩名同學進行跳高測試,每人10次跳高的平均成績恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩(wěn)定 D.無法確定7.在一次男子馬拉松長跑比賽中,隨機抽取了10名選手,記錄他們的成績(所用的時間)如下:選手12345678910時間(min)129136140145146148154158165175由此所得的以下推斷不正確的是()A.這組樣本數(shù)據(jù)的平均數(shù)超過130B.這組樣本數(shù)據(jù)的中位數(shù)是147C.在這次比賽中,估計成績?yōu)?30min的選手的成績會比平均成績差D.在這次比賽中,估計成績?yōu)?42min的選手,會比一半以上的選手成績要好8.已知一組數(shù)據(jù)1、2、3、x、5,它們的平均數(shù)是3,則這一組數(shù)據(jù)的方差為()A.1 B.2 C.3 D.49.如圖,△ABC中,AB=AC=15,AD平分∠BAC,點E為AC的中點,連接DE,若△CDE的周長為21,則BC的長為()A.16 B.14 C.12 D.610.已知一個等腰三角形的兩邊長分別是2和4,則該等腰三角形的周長為()A.8或10 B.8 C.10 D.6或1211.下列算式中,結(jié)果等于a5的是()A.a(chǎn)2+a3 B.a(chǎn)2?a3 C.a(chǎn)5÷a D.(a2)312.若函數(shù)與y=﹣2x﹣4的圖象的交點坐標為(a,b),則的值是()A.﹣4 B.﹣2 C.1 D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知x(x+1)=x+1,則x=________.14.已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,起始狀態(tài)如圖所示,大正方形固定不動,把小正方形向右平移,當兩個正方形重疊部分的面積為2平方厘米時,小正方形平移的距離為_____厘米.15.對于任意實數(shù)a、b,定義一種運算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請根據(jù)上述的定義解決問題:若不等式3※x<1,則不等式的正整數(shù)解是_____.16.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點,則k的值為_____.17.關(guān)于x的不等式組的整數(shù)解有4個,那么a的取值范圍()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤418.若分式的值為正,則實數(shù)的取值范圍是__________________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大?。唬?)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大?。?0.(6分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點,延長DE到點F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當∠ACB=60°時,求證:四邊形BCFE是菱形.21.(6分)如圖,在平面直角坐標系xOy中,函數(shù)的圖象與直線y=2x+1交于點A(1,m).(1)求k、m的值;(2)已知點P(n,0)(n≥1),過點P作平行于y軸的直線,交直線y=2x+1于點B,交函數(shù)的圖象于點C.橫、縱坐標都是整數(shù)的點叫做整點.①當n=3時,求線段AB上的整點個數(shù);②若的圖象在點A、C之間的部分與線段AB、BC所圍成的區(qū)域內(nèi)(包括邊界)恰有5個整點,直接寫出n的取值范圍.22.(8分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.求證:DF是BF和CF的比例中項;在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.23.(8分)有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數(shù)圖象,請結(jié)合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數(shù)解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.24.(10分)已知:如圖.D是的邊上一點,,交于點M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.25.(10分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經(jīng)了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(shù)(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數(shù)n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數(shù)).①當x=90時,求出乙隊修路的天數(shù);②求y與x之間的函數(shù)關(guān)系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.26.(12分)已知拋物線,與軸交于兩點,與軸交于點,且拋物線的對稱軸為直線.(1)拋物線的表達式;(2)若拋物線與拋物線關(guān)于直線對稱,拋物線與軸交于點兩點(點在點左側(cè)),要使,求所有滿足條件的拋物線的表達式.27.(12分)小丁每天從某報社以每份0.5元買進報紙200分,然后以每份1元賣給讀者,報紙賣不完,當天可退回報社,但報社只按每份0.2元退給小丁,如果小丁平均每天賣出報紙x份,純收入為y元.(1)求y與x之間的函數(shù)關(guān)系式(要求寫出自變量x的取值范圍);(2)如果每月以30天計算,小丁每天至少要買多少份報紙才能保證每月收入不低于2000元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側(cè)正方體上添加1個,往第3排中間正方體上添加2個、右側(cè)兩個正方體上再添加1個,即一共添加4個小正方體,故選C.2、D【解析】

先求出AB的長,再求出AC的長,由B、C到A的距離及圓半徑的長的關(guān)系判斷B、C與圓的關(guān)系.【詳解】由題意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,點B、點C都在⊙A外.故答案選D.【點睛】本題考查的知識點是點與圓的位置關(guān)系,解題的關(guān)鍵是熟練的掌握點與圓的位置關(guān)系.3、A【解析】分析:先根據(jù)平均數(shù)的定義確定出x的值,再根據(jù)方差公式進行計算即可求出答案.詳解:根據(jù)題意,得:=2x解得:x=3,則這組數(shù)據(jù)為6、7、3、9、5,其平均數(shù)是6,所以這組數(shù)據(jù)的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點睛:此題考查了平均數(shù)和方差的定義.平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù).方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).4、B【解析】

直接利用同底數(shù)冪的乘除運算法則以及冪的乘方運算法則、合并同類項法則分別化簡得出答案.【詳解】A、2a+3a=5a,故此選項錯誤;B、(a3)3=a9,故此選項正確;C、a2?a4=a6,故此選項錯誤;D、a6÷a3=a3,故此選項錯誤.故選:B.【點睛】此題主要考查了同底數(shù)冪的乘除運算以及合并同類項和冪的乘方運算,正確掌握運算法則是解題關(guān)鍵.5、A【解析】

根據(jù)“用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺”可以列出相應的方程組,本題得以解決.【詳解】由題意可得,,故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應的方程組.6、A【解析】

根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學成績更穩(wěn)定的是甲;故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.7、C【解析】分析:要求平均數(shù)只要求出數(shù)據(jù)之和再除以總個數(shù)即可;對于中位數(shù),因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(shù)(或最中間的兩個數(shù))即可求解.詳解:平均數(shù)=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故這組樣本數(shù)據(jù)的平均數(shù)超過130,A正確,C錯誤;因為表中是按從小到大的順序排列的,一共10名選手,中位數(shù)為第五位和第六位的平均數(shù),故中位數(shù)是(146+148)÷2=147(min),故B正確,D正確.故選C.點睛:本題考查的是平均數(shù)和中位數(shù)的定義.要注意,當所給數(shù)據(jù)有單位時,所求得的平均數(shù)和中位數(shù)與原數(shù)據(jù)的單位相同,不要漏單位.8、B【解析】

先由平均數(shù)是3可得x的值,再結(jié)合方差公式計算.【詳解】∵數(shù)據(jù)1、2、3、x、5的平均數(shù)是3,∴=3,解得:x=4,則數(shù)據(jù)為1、2、3、4、5,∴方差為×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故選B.【點睛】本題主要考查算術(shù)平均數(shù)和方差,解題的關(guān)鍵是熟練掌握平均數(shù)和方差的定義.9、C【解析】

先根據(jù)等腰三角形三線合一知D為BC中點,由點E為AC的中點知DE為△ABC中位線,故△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.【詳解】∵AB=AC=15,AD平分∠BAC,∴D為BC中點,∵點E為AC的中點,∴DE為△ABC中位線,∴DE=AB,∴△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故選C.【點睛】此題主要考查三角形的中位線定理,解題的關(guān)鍵是熟知等腰三角形的三線合一定理.10、C【解析】試題分析:①4是腰長時,三角形的三邊分別為4、4、4,∵4+4=4,∴不能組成三角形,②4是底邊時,三角形的三邊分別為4、4、4,能組成三角形,周長=4+4+4=4,綜上所述,它的周長是4.故選C.考點:4.等腰三角形的性質(zhì);4.三角形三邊關(guān)系;4.分類討論.11、B【解析】試題解析:A、a2與a3不能合并,所以A選項錯誤;B、原式=a5,所以B選項正確;C、原式=a4,所以C選項錯誤;D、原式=a6,所以D選項錯誤.故選B.12、B【解析】

求出兩函數(shù)組成的方程組的解,即可得出a、b的值,再代入求值即可.【詳解】解方程組,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交點坐標是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故選B.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點問題和解方程組等知識點,關(guān)鍵是求出a、b的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1或-1【解析】方程可化為:,∴或,∴或.故答案為1或-1.14、1或5.【解析】

小正方形的高不變,根據(jù)面積即可求出小正方形平移的距離.【詳解】解:當兩個正方形重疊部分的面積為2平方厘米時,重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,【點睛】此題考查了平移的性質(zhì),要明確,平移前后圖形的形狀和面積不變.畫出圖形即可直觀解答.15、2【解析】【分析】根據(jù)新定義可得出關(guān)于x的一元一次不等式,解之取其中的正整數(shù)即可得出結(jié)論.【詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數(shù),∴x=2,故答案為:2.【點睛】本題考查一元一次不等式的整數(shù)解以及實數(shù)的運算,通過解不等式找出x<是解題的關(guān)鍵.16、8【解析】

根據(jù)反比例函數(shù)的性質(zhì)結(jié)合點的坐標利用勾股定理解答.【詳解】解:菱形OABC的頂點A的坐標為(-3,-4),OA=OC=則點B的橫坐標為-5-3=-8,點B的坐標為(-8,-4),點C的坐標為(-5,0)則點E的坐標為(-4,-2),將點E的坐標帶入y=(x<0)中,得k=8.給答案為:8.【點睛】此題重點考察學生對反比例函數(shù)性質(zhì)的理解,掌握坐標軸點的求法和菱形性質(zhì)是解題的關(guān)鍵.17、C【解析】分析:先根據(jù)一元一次不等式組解出x的取值,再根據(jù)不等式組的整數(shù)解有4個,求出實數(shù)a的取值范圍.詳解:解不等式①,得解不等式②,得原不等式組的解集為∵只有4個整數(shù)解,∴整數(shù)解為:故選C.點睛:考查解一元一次不等式組的整數(shù)解,分別解不等式,寫出不等式的解題,根據(jù)不等式整數(shù)解的個數(shù),確定a的取值范圍.18、x>0【解析】【分析】分式值為正,則分子與分母同號,據(jù)此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)30°;(2)20°;【解析】

(1)利用圓切線的性質(zhì)求解;(2)連接OQ,利用圓的切線性質(zhì)及角之間的關(guān)系求解?!驹斀狻浚?)如圖①中,連接OQ.∵EQ是切線,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(2)如圖②中,連接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切線,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【點睛】此題主要考查圓的切線的性質(zhì)及圓中集合問題的綜合運等.20、(1)見解析;(2)見解析【解析】

(1)由題意易得,EF與BC平行且相等,利用四邊形BCFE是平行四邊形.(2)根據(jù)菱形的判定證明即可.【詳解】(1)證明::∵D.E為AB,AC中點∴DE為△ABC的中位線,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四邊形BCEF為平行四邊形.(2)∵四邊形BCEF為平行四邊形,∵∠ACB=60°,∴BC=CE=BE,∴四邊形BCFE是菱形.【點睛】本題考查平行四邊形的判定和性質(zhì)、菱形的判定、等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考常考題型.21、(1)m=3,k=3;(2)①線段AB上有(1,3)、(2,5)、(3,7)共3個整點,②當2≤n<3時,有五個整點.【解析】

(1)將A點代入直線解析式可求m,再代入,可求k.(2)①根據(jù)題意先求B,C兩點,可得線段AB上的整點的橫坐標的范圍1≤x≤3,且x為整數(shù),所以x取1,2,3.再代入可求整點,即求出整點個數(shù).②根據(jù)圖象可以直接判斷2≤n<3.【詳解】(1)∵點A(1,m)在y=2x+1上,∴m=2×1+1=3.∴A(1,3).∵點A(1,3)在函數(shù)的圖象上,∴k=3.(2)①當n=3時,B、C兩點的坐標為B(3,7)、C(3,1).∵整點在線段AB上∴1≤x≤3且x為整數(shù)∴x=1,2,3∴當x=1時,y=3,當x=2時,y=5,當x=3時,y=7,∴線段AB上有(1,3)、(2,5)、(3,7)共3個整點.②由圖象可得當2≤n<3時,有五個整點.【點睛】本題考查反比例函數(shù)和一次函數(shù)的交點問題,待定系數(shù)法,以及函數(shù)圖象的性質(zhì).關(guān)鍵是能利用函數(shù)圖象有關(guān)解決問題.22、證明見解析【解析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.23、(1)距離是70米,速度為95米/分;(2)y=35x﹣70;(3)速度為60米/分;(4)=490米;(5)兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【解析】

(1)當x=0時的y值即為A、B兩點之間的距離,由圖可知當=2時,甲追上了乙,則可知(甲速度-乙速度)×時間=A、B兩點之間的距離;(2)由題意求解E、F兩點坐標,再用待定系數(shù)法求解直線解析式即可;(3)由圖可知甲、乙速度相同;(4)由乙的速度和時間可求得BC之間的距離,再加上AB之間的距離即為AC之間的距離;(5)分0-2分鐘、2-3分鐘和4-7分鐘三段考慮.【詳解】解:(1)由圖象可知,A、B兩點之間的距離是70米,甲機器人前2分鐘的速度為:(70+60×2)÷2=95米/分;(2)設(shè)線段EF所在直線的函數(shù)解析式為:y=kx+b,∵1×(95﹣60)=35,∴點F的坐標為(3,35),則2k+b=03k+b=35,解得k=35∴線段EF所在直線的函數(shù)解析式為y=35x﹣70;(3)∵線段FG∥x軸,∴甲、乙兩機器人的速度都是60米/分;(4)A、C兩點之間的距離為70+60×7=490米;(5)設(shè)前2分鐘,兩機器人出發(fā)x分鐘相距21米,由題意得,60x+70﹣95x=21,解得,x=1.2,前2分鐘﹣3分鐘,兩機器人相距21米時,由題意得,35x﹣70=21,解得,x=2.1.4分鐘﹣7分鐘,直線GH經(jīng)過點(4,35)和點(7,0),設(shè)線段GH所在直線的函數(shù)解析式為:y=kx+b,則,4k+b=357k+b=0,解得k=-則直線GH的方程為y=-353x+當y=21時,解得x=4.6,答:兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【點睛】本題考查了一次函數(shù)的應用,讀懂圖像是解題關(guān)鍵..24、(1)證明見解析;(2)四邊形ADCN是矩形,理由見解析.【解析】

(1)根據(jù)平行得出∠DAM=∠NCM,根據(jù)ASA推出△AMD≌△CMN,得出AD=CN,推出四邊形ADCN是平行四邊形即可;(2)根據(jù)∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根據(jù)矩形的判定得出即可.【詳解】證明:(1)∵CN∥AB,∴∠DAM=∠NCM,∵在△AMD和△CMN中,∠DAM=∠NCMMA=MC∠DMA=∠NMC,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四邊形ADCN是平行四邊形,∴CD=AN;(2)解:四邊形ADCN是矩形,理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四邊形ADCN是平行四邊形,∴MD=MN=MA=MC,∴AC=DN,∴四邊形ADCN是矩形.【點睛】本題考查了全等三角形的性質(zhì)和判定,平行四邊形的判定和性質(zhì),矩形的判定的應用,能綜合運用性質(zhì)進行推理是解此題的關(guān)鍵,綜合性比較強,難度適中.25、(1)35,50;(2)①12;②y=﹣x+;③150米.【解析】

(1)用總長度÷每天修路的長度可得n的值,繼而可得乙隊單獨完成時間,再用總長度÷乙單獨完成所需時間可得乙隊每天修路的長度m;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論