湖北省荊門市2018年中考數(shù)學試卷【含答案、解析】_第1頁
湖北省荊門市2018年中考數(shù)學試卷【含答案、解析】_第2頁
湖北省荊門市2018年中考數(shù)學試卷【含答案、解析】_第3頁
湖北省荊門市2018年中考數(shù)學試卷【含答案、解析】_第4頁
湖北省荊門市2018年中考數(shù)學試卷【含答案、解析】_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

試卷第=page44頁,共=sectionpages66頁試卷第=page11頁,共=sectionpages55頁湖北省荊門市2018年中考數(shù)學試卷【含答案、解析】學校:___________姓名:___________班級:___________考號:___________一、單選題1.下列實數(shù)中是無理數(shù)是(

)A. B. C. D.2.李克強總理在2017年政府工作報告中回顧過去一年我國經濟運行緩中趨穩(wěn)、穩(wěn)中向好,國內生產總值達到74.4萬億元,名列世界前茅.將74.4萬億用科學記數(shù)法表示應為()A.7.44×1011 B.7.44×1012 C.7.44×1013 D.0.744×10143.若式子有意義,則(

)A. B. C. D.x為任意實數(shù)4.如圖,四邊形是平行四邊形,從①,②,③,這三個條件中任意選取兩個,能使是正方形的概率為(

)A. B. C. D.5.將一副三角板按如圖方式放置,點B在邊上,點C在邊的延長線上,,,則的度數(shù)為(

)A. B. C. D.6.如圖,點A,B,C在同一直線上,∠A=∠DBE=∠C,則下列結論:①∠D=∠CBE,②ABD∽CEB,③,其中正確的結論有(

)個A.0 B.1 C.2 D.37.若是關于x,y的二元一次方程,則不等式的解集是(

)A. B. C. D.8.蘭花是浙江省省花之一.小江同學在課余統(tǒng)計了小區(qū)內10位居民家里的蘭花盆栽數(shù)量,結果如下:8,6,8,8,6,2,6,4,6,6(單位:盆),關于這組數(shù)據(jù),下列說法正確的是(

)A.眾數(shù)是8 B.中位數(shù)是5 C.平均數(shù)是6 D.方差是329.如圖,已知是的內切圓,且,則的度數(shù)為(

A. B. C. D.10.由個大小相同的正方形搭成的幾何體,被小穎拿掉兩個后,得到如圖所示的幾何體,如圖是原幾何體的三視圖,請你判斷小穎拿掉的兩個正方體原來放在(

)A.號的左右 B.號的前后 C.號的前后 D.號的前后11.如圖,RtACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點H,交BC的延長線于點F,連接AF交DH于點G.則下列結論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是()A.①②④ B.②③④ C.①②③ D.①③④12.如圖,在平面直角坐標系中,拋物線與軸交于點,頂點坐標為,與軸的交點在,之間(包含端點),以下結論:①;②;③;④關于的方程沒有實數(shù)根.其中正確的結論有(

)A.4個 B.3個 C.2個 D.1個二、填空題13.規(guī)定運算:(a*b)=|a-b|,其中a、b為實數(shù),則(*3)+=.14.已知關于x的一元二次方程有兩個實數(shù)根,則實數(shù)m的取值范圍為.15.如果一個平行四邊形一個內角的平分線分它的一邊為1∶2的兩部分,那么稱這樣的平行四邊形為“協(xié)調平行四邊形”,稱該邊為“協(xié)調邊”.當“協(xié)調邊”為3時,這個平行四邊形的周長為.16.如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為10,點C在邊OA上,點D在邊AB上,且OC=3BD.反比例函數(shù)y=(k≠0)的圖象恰好經過C、D兩點,則k的值為.17.已知,,,,…,,則.(用含的代數(shù)式表示)三、解答題18.先化簡,再求值,其中.19.如圖,中,,點D在邊上,,連接,,交的延長線于點E.

(1)根據(jù)題意補全圖形(畫圖工具不限);(2)求證;(3)延長到F,使,連接交于點G,探究線段之間的數(shù)量關系,并證明.20.近日,濟南市城管局印發(fā)《濟南市貫徹落實首屆全國城市生活垃圾分類宣傳周活動的實施方案》,5月—7月,濟南市將開展生活垃圾分類工作系列活動,加大生活垃圾分類宣傳力度;濟南城管將因地制宜建設開放一批生活垃圾分類科普場館、分類收集轉運及處置設施等科普教育基地,通過寓教于樂式體驗互動,普及垃圾分類知識、剖析世界面臨的垃圾分類難題,提高垃圾分類自覺性,推進生活垃圾分類“進機關、醫(yī)院、學校、單位、社區(qū)、小區(qū)、農村、廠區(qū)、企業(yè)、公園”等基層單位,讓垃圾分類科學、快速融入市民日常生活和工作中.某中學為了本校解學生對垃圾分類知識的掌握情況,該校團委在校園內隨機抽取了部分學生進行問卷調在,將他們的得分按A:優(yōu)秀,B:良好,C:合格,D:不合格四個等級進行統(tǒng)計,并繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.(1)這次學校抽查的學生人數(shù)是__________人;(2)將條形圖補充完整;(3)扇形統(tǒng)計圖中C組對應的扇形圓心角度數(shù)是__________;(4)如果該校共有3000人,請估計該校不合格的人數(shù).21.某數(shù)學興趣小組在學習了《銳角三角函數(shù)》以后,開展測量物體高度的實踐活動,測量一建筑物CD的高度,他們站在B處仰望樓頂C,測得仰角為30°,再往建筑物方向走20m,到達點F處測得樓頂C的仰角為45°(B、F、D在同一直線上).已知觀測員的眼睛與地面距離為1.5m(即AB=1.5m),求這棟建筑物CD的高度.(參考數(shù)據(jù):≈1.732,≈1.414.結果保留整數(shù))22.端午節(jié)吃粽子是中華民族的傳統(tǒng)習俗,市場上豆沙粽的進價比豬肉粽的進價每盒便宜10元,某商家用8000元購進的豬肉粽和用6000元購進的豆沙粽盒數(shù)相同,在銷售中,該商家發(fā)現(xiàn)豬肉棕每盒售價50元時,每天可售出100盒;每盒售價提高1元時,每天少售出2盒,設豬肉粽每盒售價元,表示該商家每天銷售豬肉粽的利潤(單位:元).(1)豬肉粽和豆沙粽每盒的進價分別為__________元和__________元;(2)若每盒利潤率不超過,問豬肉粽價格為多少元時,商家每天獲利1350元?(3)若滿足,求商家每天的最大利潤.23.如圖,矩形中,,,點在邊的延長線上,連接,過點作的垂線,交于點,交邊的延長線于點.(1)連接,若,求證:四邊形為菱形;(2)在(1)的條件下,求的長;(3)設,,求關于的函數(shù)解析式,并直接寫出的取值范圍.24.已知在平面直角坐標系中,拋物線與軸交于點、點(點在點的左側),與軸交于點,拋物線的頂點為,且.(1)求拋物線的表達式;(2)點是線段上一點,如果,求點的坐標;(3)在第(2)小題的條件下,將該拋物線向左平移,點平移至點處,過點作直線,垂足為點,如果,求平移后拋物線的表達式.答案第=page1616頁,共=sectionpages1818頁答案第=page1515頁,共=sectionpages1919頁《初中數(shù)學中考真題》參考答案題號12345678910答案BCAACDACBD題號1112答案CA1.B【詳解】解:,,,,所以是無理數(shù),其余的都是有理數(shù),即是無理數(shù).故選:B.【點睛】本題主要考查了無理數(shù)的定義,最簡二次根式、立方根、零指數(shù)冪,理解相關運算法則是解答關鍵.2.C【分析】科學記數(shù)法的表示形式為a×10n的形式,1≤|a|<10,n為整數(shù).【詳解】解:74.4萬億=7.44×1013,故選C.【點睛】本題主要考查科學記數(shù)法的概念.3.A【分析】根據(jù)分式有意義的條件和二次根式有意義的條件進行求解即可.【詳解】解:∵式子有意義,∴,∴,故選A.【點睛】本題主要考查了二次根式有意義的條件,分式有意義的條件,熟知二次根式有意義的條件是被開方數(shù)大于等于0,分式有意義的條件是分母不為0是解題的關鍵.4.A【分析】本題考查了正方形的判定,用概率公式求概率,掌握正方形的判定方法和概率公式是解題的關鍵.根據(jù)從①,②,③,這三個條件中任意選取兩個,共有①②、①③、②③,3種方法,由正方形的判定方法,可得①②、①③共有2種可判定平行四邊形是正方形.再根據(jù)概率公式求解即可.【詳解】解:從①,②,③,這三個條件中任意選取兩個,共有①②、①③、②③,3種方法,由正方形的判定方法,可得①②、①③共有2種可判定平行四邊形是正方形.∴,從①,②,③,這三個條件中任意選取兩個,能使是正方形的概率為.故選:A.5.C【分析】本題考查了平行線的性質,三角形外角的定義,三角形內角和定理,由題意可知,,,從而得到,再由,得到,根據(jù)三角形內角和定理即可求解,掌握相關性質是解題的關鍵.【詳解】解:由題意可知,,,∵,∴,∵,∴,∴,故選:C.6.D【分析】根據(jù)三角形的外角性質以及∠A=∠DBE=∠C,可判斷①正確,進而得ABD∽CEB,判斷②正確,最后根據(jù)相似三角形的性質判斷③成立.【詳解】解:∵∠A=∠DBE=∠C,∠CBD=∠DBE+∠CBE=∠A+∠D,∴∠D=∠CBE,故①正確,∴ABD∽CEB,故②正確,∴,故③正確,∴正確的結論有3個,,故選:D.【點睛】本題考查了三角形的外角性質及相似三角形的判定及性質,熟練掌握相似三角形的判定是解題的關鍵.7.A【分析】根據(jù)二元一次方程的定義可以得到x,y的次數(shù)都是一次,由此可以得到關于m,n的方程,解方程就可以求出m,n的值,再代入不等式3x﹣(m﹣n)≥0,即可求得解集.【詳解】解:∵是關于x,y的二元一次方程,∴,解得,,解得,代入,得,解得.故選:A.【點睛】本題考查一元一次不等式的解集、二元一次方程的定義.二元一次方程必須符合以下三個條件:(1)方程中只含有2個未知數(shù);(2)含未知數(shù)項的最高次數(shù)為一次;(3)方程是整式方程.8.C【分析】此題考查了平均數(shù)、眾數(shù)、中位數(shù)及方差的知識,解題時分別計算出眾數(shù)、中位數(shù)、平均數(shù)及方差后找到正確的選項即可.分別求出該組數(shù)據(jù)的眾數(shù)、平均數(shù)、中位數(shù)及方差后,選擇正確的答案即可.【詳解】解:將小區(qū)內10位居民家里的蘭花盆栽數(shù)量,排序后為:,在該組數(shù)據(jù)中,6出現(xiàn)的次數(shù)最多,故眾數(shù)為6,故A錯誤;中位數(shù)為:,故B錯誤;平均數(shù)為:,故C正確;方差為:,故D錯誤.故選:C.9.B【分析】由三角形內切圓定義可知、是、的角平分線,所以可得到關系式,把對應數(shù)值代入即可求得的值.【詳解】解:∵是的內切圓,、是、的角平分線,,.故選:B.【點睛】此題主要考查了三角形的內切圓.關鍵是要知道三角形內切圓的圓心是三角形三個內角平分線的交點.10.D【分析】從俯視圖可知小穎拿掉的兩個正方體所在的位置.【詳解】觀察圖形,由三視圖中的俯視圖可得拿掉的兩個正方體原來放在2號的前后.故選:D.【點睛】考查由三視圖判斷幾何體,熟練掌握幾何體的三視圖是解題的關鍵.11.C【分析】①根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和與角平分線的定義表示出∠CAP,再根據(jù)角平分線的定義然后利用三角形的內角和定理整理即可得解;②③先根據(jù)直角的關系求出,然后利用角角邊證明△AHP與△FDP全等,根據(jù)全等三角形對應邊相等可得,對應角相等可得然后利用平角的關系求出,再利用角角邊證明△ABP與△FBP全等,然后根據(jù)全等三角形對應邊相等得到,從而得解;④根據(jù)PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根據(jù)等角對等邊可得DG=AG,再根據(jù)等腰直角三角形兩腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜邊大于直角邊,AF>AP,從而得出本小題錯誤.【詳解】解:①∵∠ABC的角平分線BE和∠BAC的外角平分線,∴在△ABP中,,故本小題正確;②③∵∴∴∠AHP=∠FDP,∵PF⊥AD,∴在△AHP與△FDP中,∴△AHP≌△FDP(AAS),∴DF=AH,∵AD為∠BAC的外角平分線,∠PFD=∠HAP,∴又∵∴∠PAE=∠PFD,∵∠ABC的角平分線,∴∠ABP=∠FBP,在△ABP與△FBP中,∴△ABP≌△FBP(AAS),∴AB=BF,AP=PF故②小題正確;∵BD=DF+BF,∴BD=AH+AB,∴BD?AH=AB,故③小題正確;④∵PF⊥AD,

∴AG⊥DH,∵AP=PF,PF⊥AD,∴∴∴DG=AG,∵AG⊥DH,∴△ADG與△FGH都是等腰直角三角形,∴DG=AG,GH=GF,∴DG=GH+AF,∵AF>AP,∴DG=AP+GH不成立,故本小題錯誤,綜上所述①②③正確.故選C.【點睛】本題考查直角三角形的性質,角平分線的定義,垂線,全等三角形的判定與性質,難度較大.掌握全等三角形的判定方法是解題的關鍵.12.A【分析】利用拋物線開口方向得到a>0,再由拋物線的頂點,得對稱軸為,則拋物線與x軸的另一個交點為(3,0),當x=2,則y<0,于是可對①進行判斷;利用≤c≤和c=-3a可對②進行判斷;由b=-2a,c=-3a,a+b+c=m,求出a、c的值,可對③進行判斷;根據(jù)拋物線y=ax2+bx+c與直線y=m-1沒有交點可對④進行判斷.【詳解】解:由題意可知,,∵拋物線的頂點為,∴對稱軸為,∴,∵拋物線與軸交于點,∴拋物線與x軸的另一個交點坐標為(3,0),當x=2,則y<0,∴,∴;故①正確;∵拋物線經過點,∴,∵,∴,∵拋物線與軸的交點在,之間(包含端點),∴,∴,∴;故②正確;當時,有,∵,,∴,∴,∴;故③正確;∵拋物線的頂點為,且,∴拋物線y=ax2+bx+c與直線y=m-1沒有交點,∴關于的方程沒有實數(shù)根;故④正確;故選:A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.13.3【詳解】根據(jù)題意得(*3)+=|-3|+=3-+=3,故答案為:3.14.且【分析】本題考查了根的判別式,利用判別式的意義得到,然后解不等式即可.【詳解】∵關于x的一元二次方程有兩個實數(shù)根,∴且,解得且,故答案為:且.15.8或10【詳解】解:如圖所示:①當AE=1,DE=2時,∵四邊形ABCD是平行四邊形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,∴平行四邊形ABCD的周長=2(AB+AD)=8;②當AE=2,DE=1時,同理得:AB=AE=2,∴平行四邊形ABCD的周長=2(AB+AD)=10;故答案為8或10.16.【分析】過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,設BD=a,則OC=3a,根據(jù)等邊三角形的性質結合解含30度角的直角三角形,可得出點C、D的坐標,再利用反比例函數(shù)圖象上點的坐標特征即可求出a、k的值,此題得解.【詳解】解:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設BD=a,則OC=3a.∵△AOB為邊長為10的等邊三角形,∴∠COE=∠DBF=60°,OB=10.在Rt△COE中,∠COE=60°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=,CE=,∴點C(,).同理,可求出點D的坐標為(,).∵反比例函數(shù)y=(k≠0)的圖象經過點C和點D,∴k==,∴a=2,k=.故答案為.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、等邊三角形的性質以及解含30度角的直角三角形,根據(jù)等邊三角形的性質結合解含30度角的直角三角形,求出點C、D的坐標是解題的關鍵.17.2a【分析】按照定義進行計算后,找到數(shù)的規(guī)律后,進行計算即可.【詳解】由題意知,,,………所以每兩個一循環(huán),腳碼單數(shù)時故答案為:2a【點睛】本題考查了數(shù)列循環(huán)規(guī)律,按照定義進行化簡后找到循環(huán)規(guī)律是解題的關鍵.18.,1【分析】本題主要考查了分式的化簡求值,掌握分式的混合運算法則成為解題的關鍵.先根據(jù)分式的混合運算法則化簡,然后將代入計算即可.【詳解】解:,當時,原式.19.(1)圖見解析(2)見解析(3),見解析【分析】(1)根據(jù)題意,補全圖形即可;(2)等邊對等角,得到,根據(jù)外角的性質,推出,再根據(jù)等邊對等角以及等量代換,得到,即可;(3)在上截取,連接,先證明,得到,,進而證明,得到,即可得證.【詳解】(1)解:補全圖形如圖,

(2)∵

∴,∵,且,∴,∵,∴,∴,∴;(3),證明如下:在上截取,連接,

∵,,∴,∴,,∵,∴,∵,,∴,∴,又,∴,∴,∴.【點睛】本題考查基本作圖—作線段,作角,等腰三角形的判定和性質,全等三角形的判定和性質,正確的作圖,構造全等三角形,是解題的關鍵.20.(1)40(2)圖見解析(3)90(4)估計該校不合格的人數(shù)為300人【分析】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.(1)用等級的人數(shù)除以等級的人數(shù)所占的百分比即可得到總人數(shù);(2)用(1)的結論分別減去其它三個等級的人數(shù)可得等級的人數(shù),進而補全條形圖;(3)用乘組所占比例可得答案;(4)全校3000人乘樣本中不合格的人數(shù)所占比例即可得到結論.【詳解】(1)這次學校抽查的學生人數(shù)是:(人,故答案為:40人;(2)等級的人數(shù)為:(人,補全條形圖如下:(3),故答案為:90;(4)∴估計該校不合格的人數(shù)為300人21.這棟建筑物CD的高度約為29m【分析】延長AE交CD于點G,設CG=xm,在直角△CGE中利用x表示出EG,然后在直角△ACG中,利用x表示出AG,根據(jù)即可列方程求得x的值,進而求出CD的長.【詳解】解:延長AE交CD于點G.設CG=xm,在直角△CGE中,∠CEG=45°,則EG=CG=xm.在直角△ACG中,AG=m.∵,

∴,解得:(m).則CD=27.32+1.5=28.82≈29(m).答:這棟建筑物CD的高度約為29m.【點睛】本題考查的是解直角三角形的應用?仰角俯角問題,熟記銳角三角函數(shù)的定義是解答此題的關鍵.22.(1)40,30;(2)豬肉粽價格為55元時,商家每天獲利1350元;(3)最大利潤為1750元.【分析】(1)設豬肉粽每盒進價元,則豆沙粽每盒進價元,根據(jù)商家用8000元購進的豬肉粽和用6000元購進的豆沙粽盒數(shù)相同列出方程,解方程即可;(2)根據(jù)利潤率得到的取值范圍,再根據(jù)每盒利潤銷售量列出方程,解方程即可;(3)列出每天銷售豬肉粽的利潤與豬肉粽每盒售價元的函數(shù)關系式,根據(jù)二次函數(shù)的性質及的取值范圍求利潤的最大值.本題考查了一元一次不等式的應用,二次函數(shù)的應用以及分式方程的解法,關鍵是根據(jù)題意列出每天銷售豬肉粽的利潤與豬肉粽每盒售價元的函數(shù)關系式.【詳解】(1)解:設豬肉粽每盒進價元,則豆沙粽每盒進價元,則,解得,經檢驗是方程的解,豬肉粽每盒進價40元,豆沙粽每盒進價30元,故答案為:40,30;(2)解:每盒利潤率不超過,則∴∵進價為元,由題意得,,整理得,,解得(舍去),.答:豬肉粽價格為55元時,商家每天獲利1350元;(3)解:設商家的利潤為元,,配方得:,時,隨的增大而增大,當時,取最大值,最大值為1750.答:最大利潤為1750元.23.(1)見解析;(2);(3),.【分析】(1)先證明出四邊形DBEN是平行四邊形,根據(jù)鄰邊相等可得平行四邊形DBEN是菱形(2)先運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論