安徽省太湖縣2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
安徽省太湖縣2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
安徽省太湖縣2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
安徽省太湖縣2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
安徽省太湖縣2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省太湖縣2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,一次函數(shù)y1=x+b與一次函數(shù)y2=kx+4的圖象交于點(diǎn)P(1,3),則關(guān)于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<12.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點(diǎn)P是斜邊AB上一點(diǎn).過點(diǎn)P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為()A.B.C.D.3.觀察下列圖案,是軸對(duì)稱而不是中心對(duì)稱的是()A. B. C. D.4.如圖所示的幾何體是由4個(gè)大小相同的小立方體搭成,其俯視圖是()A. B. C. D.5.下列各式屬于最簡(jiǎn)二次根式的有()A. B. C. D.6.如圖,I是?ABC的內(nèi)心,AI向延長(zhǎng)線和△ABC的外接圓相交于點(diǎn)D,連接BI,BD,DC下列說法中錯(cuò)誤的一項(xiàng)是()A.線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定能與線段DC重合B.線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定能與線段DI熏合C.∠CAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定能與∠DAB重合D.線段ID繞點(diǎn)I順時(shí)針旋轉(zhuǎn)一定能與線段IB重合7.小強(qiáng)是一位密碼編譯愛好者,在他的密碼手冊(cè)中,有這樣一條信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分別對(duì)應(yīng)下列六個(gè)字:昌、愛、我、宜、游、美,現(xiàn)將(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,結(jié)果呈現(xiàn)的密碼信息可能是()A.我愛美 B.宜晶游 C.愛我宜昌 D.美我宜昌8.“射擊運(yùn)動(dòng)員射擊一次,命中靶心”這個(gè)事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件9.如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上,△OAB是邊長(zhǎng)為4的等邊三角形,以O(shè)為旋轉(zhuǎn)中心,將△OAB按順時(shí)針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點(diǎn)A′的坐標(biāo)為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)10.下列四個(gè)圖案中,不是軸對(duì)稱圖案的是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知x(x+1)=x+1,則x=________.12.點(diǎn)A(﹣3,y1),B(2,y2),C(3,y3)在拋物線y=2x2﹣4x+c上,則y1,y2,y3的大小關(guān)系是_____.13.如圖,△ABC與△DEF位似,點(diǎn)O為位似中心,若AC=3DF,則OE:EB=_____.14.如圖,△ABC的面積為6,平行于BC的兩條直線分別交AB,AC于點(diǎn)D,E,F(xiàn),G.若AD=DF=FB,則四邊形DFGE的面積為_____.15.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個(gè)數(shù)中的其中某一個(gè),若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個(gè)人玩這個(gè)游戲,得出他們”心有靈犀”的概率為_____.16.填在下面各正方形中的四個(gè)數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值是.三、解答題(共8題,共72分)17.(8分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點(diǎn),ED的延長(zhǎng)線與CB的延長(zhǎng)線相交于點(diǎn)F.求證:DF是BF和CF的比例中項(xiàng);在AB上取一點(diǎn)G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.18.(8分)如圖,直角坐標(biāo)系中,⊙M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A(,0)與點(diǎn)B(0,﹣1),點(diǎn)D在劣弧OA上,連接BD交x軸于點(diǎn)C,且∠COD=∠CBO.(1)請(qǐng)直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長(zhǎng)線上尋找一點(diǎn)E,使得直線AE恰好與⊙M相切,求此時(shí)點(diǎn)E的坐標(biāo).19.(8分)如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo).20.(8分)我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽”,初、高中部根據(jù)初賽成績(jī)各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.平均分(分)中位數(shù)(分)眾數(shù)(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據(jù)圖示計(jì)算出a、b、c的值;結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績(jī)較好?計(jì)算初中代表隊(duì)決賽成績(jī)的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.21.(8分)在矩形ABCD中,AB=6,AD=8,點(diǎn)E是邊AD上一點(diǎn),EM⊥EC交AB于點(diǎn)M,點(diǎn)N在射線MB上,且AE是AM和AN的比例中項(xiàng).如圖1,求證:∠ANE=∠DCE;如圖2,當(dāng)點(diǎn)N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長(zhǎng);連接AC,如果△AEC與以點(diǎn)E、M、N為頂點(diǎn)所組成的三角形相似,求DE的長(zhǎng).22.(10分)如圖,已知:正方形ABCD,點(diǎn)E在CB的延長(zhǎng)線上,連接AE、DE,DE與邊AB交于點(diǎn)F,F(xiàn)G∥BE交AE于點(diǎn)G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長(zhǎng);(3)在BC邊上取點(diǎn)M,使得BM=BE,連接AM交DE于點(diǎn)O.求證:FO?ED=OD?EF.23.(12分)如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數(shù);求證:AE是⊙O的切線;當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).24.如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點(diǎn)D是BC的中點(diǎn),點(diǎn)P是AB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),延長(zhǎng)PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當(dāng)AP的值為時(shí),四邊形PBEC是矩形;②當(dāng)AP的值為時(shí),四邊形PBEC是菱形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:當(dāng)x>1時(shí),x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點(diǎn):一次函數(shù)與一元一次不等式.2、D【解析】解:當(dāng)點(diǎn)Q在AC上時(shí),∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當(dāng)點(diǎn)Q在BC上時(shí),如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點(diǎn)睛:本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點(diǎn)Q在BC上這種情況.3、A【解析】試題解析:試題解析:根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的概念進(jìn)行判斷可得:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)符合題意;B、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;C、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;D、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故本選項(xiàng)不符合題意.故選A.點(diǎn)睛:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形.這個(gè)旋轉(zhuǎn)點(diǎn),就叫做對(duì)稱中心.4、C【解析】試題分析:根據(jù)三視圖的意義,可知俯視圖為從上面往下看,因此可知共有三個(gè)正方形,在一條線上.故選C.考點(diǎn):三視圖5、B【解析】

先根據(jù)二次根式的性質(zhì)化簡(jiǎn),再根據(jù)最簡(jiǎn)二次根式的定義判斷即可.【詳解】A選項(xiàng):,故不是最簡(jiǎn)二次根式,故A選項(xiàng)錯(cuò)誤;B選項(xiàng):是最簡(jiǎn)二次根式,故B選項(xiàng)正確;C選項(xiàng):,故不是最簡(jiǎn)二次根式,故本選項(xiàng)錯(cuò)誤;D選項(xiàng):,故不是最簡(jiǎn)二次根式,故D選項(xiàng)錯(cuò)誤;

故選:B.【點(diǎn)睛】考查了對(duì)最簡(jiǎn)二次根式的定義的理解,能理解最簡(jiǎn)二次根式的定義是解此題的關(guān)鍵.6、D【解析】解:∵I是△ABC的內(nèi)心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點(diǎn)睛:本題考查了三角形的內(nèi)切圓和內(nèi)心的,以及等腰三角形的判定與性質(zhì),同弧所對(duì)的圓周角相等.7、C【解析】試題分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因?yàn)閤﹣y,x+y,a+b,a﹣b四個(gè)代數(shù)式分別對(duì)應(yīng)愛、我,宜,昌,所以結(jié)果呈現(xiàn)的密碼信息可能是“愛我宜昌”,故答案選C.考點(diǎn):因式分解.8、D【解析】試題分析:“射擊運(yùn)動(dòng)員射擊一次,命中靶心”這個(gè)事件是隨機(jī)事件,屬于不確定事件,故選D.考點(diǎn):隨機(jī)事件.9、D【解析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得則易得A點(diǎn)坐標(biāo)和O點(diǎn)坐標(biāo),再利用勾股定理計(jì)算出然后根據(jù)第二象限點(diǎn)的坐標(biāo)特征可寫出B點(diǎn)坐標(biāo);由旋轉(zhuǎn)的性質(zhì)得則點(diǎn)A′與點(diǎn)B重合,于是可得點(diǎn)A′的坐標(biāo).詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長(zhǎng)為4的等邊三角形∴∴A點(diǎn)坐標(biāo)為(?4,0),O點(diǎn)坐標(biāo)為(0,0),在Rt△BOC中,∴B點(diǎn)坐標(biāo)為∵△OAB按順時(shí)針方向旋轉(zhuǎn),得到△OA′B′,∴∴點(diǎn)A′與點(diǎn)B重合,即點(diǎn)A′的坐標(biāo)為故選D.點(diǎn)睛:考查圖形的旋轉(zhuǎn),等邊三角形的性質(zhì).求解時(shí),注意等邊三角形三線合一的性質(zhì).10、B【解析】

根據(jù)軸對(duì)稱圖形的定義逐項(xiàng)識(shí)別即可,一個(gè)圖形的一部分,以某條直線為對(duì)稱軸,經(jīng)過軸對(duì)稱能與圖形的另一部分重合,這樣的圖形叫做軸對(duì)稱圖形.【詳解】A、是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、不是軸對(duì)稱圖形,故本選項(xiàng)正確;C、是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D、是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查了軸對(duì)稱圖形的識(shí)別,熟練掌握軸對(duì)稱圖形的定義是解答本題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1或-1【解析】方程可化為:,∴或,∴或.故答案為1或-1.12、y2<y3<y1【解析】

把點(diǎn)的坐標(biāo)分別代入拋物線解析式可分別求得y1、y2、y3的值,比較可求得答案.【詳解】∵y=2x2-4x+c,∴當(dāng)x=-3時(shí),y1=2×(-3)2-4×(-3)+c=30+c,當(dāng)x=2時(shí),y2=2×22-4×2+c=c,當(dāng)x=3時(shí),y3=2×32-4×3+c=6+c,∵c<6+c<30+c,∴y2<y3<y1,故答案為y2<y3<y1.【點(diǎn)睛】本題主要考查二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,掌握函數(shù)圖象上點(diǎn)的坐標(biāo)滿足函數(shù)解析式是解題的關(guān)鍵.13、1:2【解析】

△ABC與△DEF是位似三角形,則DF∥AC,EF∥BC,先證明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,據(jù)此可得答案.【詳解】解:∵△ABC與△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,則OE:EB=1:2故答案為:1:2【點(diǎn)睛】本題考查了位似的相關(guān)知識(shí),位似是相似的特殊形式,位似比等于相似比,位似圖形的對(duì)應(yīng)頂點(diǎn)的連線平行或共線.14、1.【解析】

先根據(jù)題意可證得△ABC∽△ADE,△ABC∽△AFG,再根據(jù)△ABC的面積為6分別求出△ADE與△AFG的面積,則四邊形DFGE的面積=S△AFG-S△ADE.【詳解】解:∵DE∥BC,,

∴△ADE∽△ABC,∵AD=DF=FB,

∴=()1,即=()1,∴S△ADE=;∵FG∥BC,∴△AFG∽△ABC,

=()1,即=()1,∴S△AFG=;∴S四邊形DFGE=S△AFG-S△ADE=-=1.故答案為:1.【點(diǎn)睛】本題考查了相似三角形的性質(zhì)與應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的性質(zhì)與應(yīng)用.15、【解析】

利用P(A)=,進(jìn)行計(jì)算概率.【詳解】從0,1,2,3四個(gè)數(shù)中任取兩個(gè)則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點(diǎn)睛】本題考查了概率的簡(jiǎn)單計(jì)算能力,是一道列舉法求概率的問題,屬于基礎(chǔ)題,可以直接應(yīng)用求概率的公式.16、2【解析】試題分析:分析前三個(gè)正方形可知,規(guī)律為右上和左下兩個(gè)數(shù)的積減左上的數(shù)等于右下的數(shù),且左上,左下,右上三個(gè)數(shù)是相鄰的偶數(shù).因此,圖中陰影部分的兩個(gè)數(shù)分別是左下是12,右上是1.解:分析可得圖中陰影部分的兩個(gè)數(shù)分別是左下是12,右上是1,則m=12×1﹣10=2.故答案為2.考點(diǎn):規(guī)律型:數(shù)字的變化類.三、解答題(共8題,共72分)17、證明見解析【解析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進(jìn)行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點(diǎn),∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.18、(1)詳見解析;(2)(,1).【解析】

(1)根據(jù)勾股定理可得AB的長(zhǎng),即⊙M的直徑,根據(jù)同弧所對(duì)的圓周角可得BD平分∠ABO;(2)作輔助構(gòu)建切線AE,根據(jù)特殊的三角函數(shù)值可得∠OAB=30°,分別計(jì)算EF和AF的長(zhǎng),可得點(diǎn)E的坐標(biāo).【詳解】(1)∵點(diǎn)A(,0)與點(diǎn)B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直徑,∴⊙M的直徑為2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如圖,過點(diǎn)A作AE⊥AB于E,交BD的延長(zhǎng)線于點(diǎn)E,過E作EF⊥OA于F,即AE是切線,∵在Rt△ACB中,tan∠OAB=,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB?tan30°=1×,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等邊三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴點(diǎn)E的坐標(biāo)為(,1).【點(diǎn)睛】此題屬于圓的綜合題,考查了勾股定理、圓周角定理、等邊三角形的判定與性質(zhì)以及三角函數(shù)等知識(shí).注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.19、解:(1);(2)存在,P(,);(1)Q點(diǎn)坐標(biāo)為(0,-)或(0,)或(0,-1)或(0,-1).【解析】

(1)已知點(diǎn)A坐標(biāo)可確定直線AB的解析式,進(jìn)一步能求出點(diǎn)B的坐標(biāo).點(diǎn)A是拋物線的頂點(diǎn),那么可以將拋物線的解析式設(shè)為頂點(diǎn)式,再代入點(diǎn)B的坐標(biāo),依據(jù)待定系數(shù)法可解.(2)首先由拋物線的解析式求出點(diǎn)C的坐標(biāo),在△POB和△POC中,已知的條件是公共邊OP,若OB與OC不相等,那么這兩個(gè)三角形不能構(gòu)成全等三角形;若OB等于OC,那么還要滿足的條件為:∠POC=∠POB,各自去掉一個(gè)直角后容易發(fā)現(xiàn),點(diǎn)P正好在第二象限的角平分線上,聯(lián)立直線y=-x與拋物線的解析式,直接求交點(diǎn)坐標(biāo)即可,同時(shí)還要注意點(diǎn)P在第二象限的限定條件.(1)分別以A、B、Q為直角頂點(diǎn),分類進(jìn)行討論,找出相關(guān)的相似三角形,依據(jù)對(duì)應(yīng)線段成比例進(jìn)行求解即可.【詳解】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=1,∴B的坐標(biāo)是(1,0).∵A為頂點(diǎn),∴設(shè)拋物線的解析為y=a(x﹣1)2﹣4,把B(1,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣1.(2)存在.∵OB=OC=1,OP=OP,∴當(dāng)∠POB=∠POC時(shí),△POB≌△POC,此時(shí)PO平分第二象限,即PO的解析式為y=﹣x.設(shè)P(m,﹣m),則﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),∴P(,).(1)①如圖,當(dāng)∠Q1AB=90°時(shí),△DAQ1∽△DOB,∴,即=,∴DQ1=,∴OQ1=,即Q1(0,-);②如圖,當(dāng)∠Q2BA=90°時(shí),△BOQ2∽△DOB,∴,即,∴OQ2=,即Q2(0,);③如圖,當(dāng)∠AQ1B=90°時(shí),作AE⊥y軸于E,則△BOQ1∽△Q1EA,∴,即∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,即Q1(0,﹣1),Q4(0,﹣1).綜上,Q點(diǎn)坐標(biāo)為(0,-)或(0,)或(0,﹣1)或(0,﹣1).20、(1)85,85,80;(2)初中部決賽成績(jī)較好;(3)初中代表隊(duì)選手成績(jī)比較穩(wěn)定.【解析】

分析:(1)根據(jù)成績(jī)表,結(jié)合平均數(shù)、眾數(shù)、中位數(shù)的計(jì)算方法進(jìn)行解答;(2)比較初中部、高中部的平均數(shù)和中位數(shù),結(jié)合比較結(jié)果得出結(jié)論;(3)利用方差的計(jì)算公式,求出初中部的方差,結(jié)合方差的意義判斷哪個(gè)代表隊(duì)選手的成績(jī)較為穩(wěn)定.【詳解】詳解:(1)初中5名選手的平均分,眾數(shù)b=85,高中5名選手的成績(jī)是:70,75,80,100,100,故中位數(shù)c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數(shù)高,故初中部決賽成績(jī)較好;(3)=70,∵,∴初中代表隊(duì)選手成績(jī)比較穩(wěn)定.【點(diǎn)睛】本題是一道有關(guān)條形統(tǒng)計(jì)圖、平均數(shù)、眾數(shù)、中位數(shù)、方差的統(tǒng)計(jì)類題目,掌握平均數(shù)、眾數(shù)、中位數(shù)、方差的概念及計(jì)算方法是解題的關(guān)鍵.21、(1)見解析;(2);(1)DE的長(zhǎng)分別為或1.【解析】

(1)由比例中項(xiàng)知,據(jù)此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;(2)先證∠ANE=∠EAC,結(jié)合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.【詳解】解:(1)∵AE是AM和AN的比例中項(xiàng)∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC與NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,當(dāng)△AEC與以點(diǎn)E、M、N為頂點(diǎn)所組成的三角形相似時(shí)①∠ENM=∠EAC,如圖2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如圖1,過點(diǎn)E作EH⊥AC,垂足為點(diǎn)H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,設(shè)DE=1x,則HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,綜上所述,DE的長(zhǎng)分別為或1.【點(diǎn)睛】本題是相似三角形的綜合問題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識(shí)點(diǎn).22、(1)證明見解析;(2)AG=;(3)證明見解析.【解析】

(1)根據(jù)正方形的性質(zhì)得到AD∥BC,AB∥CD,AD=CD,根據(jù)相似三角形的性質(zhì)列出比例式,等量代換即可;(2)根據(jù)勾股定理求出AE,根據(jù)相似三角形的性質(zhì)計(jì)算即可;(3)延長(zhǎng)GF交AM于H,根據(jù)平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代換得到,即,于是得到結(jié)論.【詳解】解:(1)∵四邊形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴=4,AE=,∴=4,∴AG=;(3)延長(zhǎng)GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,,∴,∴,∴FO?E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論