




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
考點七:四邊形一三年(2022-2024)中考數(shù)學真題分類匯編
一、單選題
1.[2023年北京中考真題]正十二邊形的外角和為()
A.30°B.1500C.360°D.18OO0
2.[2024年貴州中考真題]如圖,口ABC。的對角線AC與3。相交于點。,則下列結(jié)論一定正
確的是()
,AB=BCB.AD^BCC.OA^OBD.AC±BD
3.[2024年西藏中考真題]已知正多邊形的一個外角為60。,則這個正多邊形的內(nèi)角和為()
A.9000B.7200C.5400D.3600
4.[2022年河北中考真題]依據(jù)所標數(shù)據(jù),下列一定為平行四邊形的是()
CEHBD,若AC=3,BD=5,則四邊形。CEO的周長為()
A.4B.6C.8D.16
6.[2022年河南中考真題]如圖,在菱形A3CD中,對角線AC,3。相交于點。,點E為CD
的中點.若0E=3,則菱形A3CD的周長為()
A.6B.12C.24D.48
7.[2024年河北中考真題]直線/與正六邊形ABCDEF的邊A3,所分別相交于點M,N,如
A.115。B.1200C.135。D.1440
8.[2022年海南中考真題]如圖,菱形A3CD中,點E是邊CD的中點,ER垂直A3交A3的
延長線于點若BF:CE=1:2,EF=近,則菱形A3CD的邊長是()
A.3B.4中
9.[2023年內(nèi)蒙古呼和浩特中考真題]如圖,矩形ABCD中,對角線3。的垂直平分線MN分
別交AD,BC于點M,N.若A"=l,BN=2,則3。的長為()
C,275D.3加
10.[2023年西藏中考真題]如圖,兩張寬為3的長方形紙條疊放在一起,已知NABC=60。,
則陰影部分的面積是()
B,fC
A
-IB"C*D.66
二、填空題
11.[2024年西藏中考真題]如圖,在四邊形ABCD中,AD=BC,AB=CD,AC與3。相交
于點。,請?zhí)砑右粋€條件,使四邊形ABCD是菱形.
12.[2023年福建中考真題]如圖,在菱形A3CD中,AB=10,4=60。,則AC的長為
Ap1
13.[2022年北京中考真題]如圖,在矩形ABCD中,若AB=3,AC=5,署=(,則AE的
長為.
14.[2023年福建中考真題]如圖,在nABCD中,。為3。的中點,ER過點。且分別交
AB,CD于點E,F.若AE=10,則CF的長為.
15.[2023年湖南湘西土家族苗族自治州中考真題]如圖,在矩形ABCD中,點E在邊
上,點R是AE的中點,AB=8,AD=DE=10,則3b的長為.
三、解答題
16.[2022年云南中考真題]如圖;在平行四邊形ABCD中,連接3D,E為線段AD的中點,延
長3E與CD的延長線交于點E連接ARZBDF=90°
(1)求證:四邊形A3DR是矩形;
(2)若40=5,DF=3,求四邊形ABCT的面積S.
17.[2023年湖南湘西土家族苗族自治州中考真題]如圖,四邊形A3CD是平行四邊形,
BM//DN,且分別交對角線AC于點M,N,連接MD,BN.
(1)求證:ZDMN=ZBNM.
(2)若NBAC=NZMC,求證:四邊形3MDN是菱形.
18.[2024年新疆中考真題]如圖,△ABC的中線3D,CE交于點。,點EG分別是
0c的中點.
A
(1)求證:四邊形DERG是平行四邊形;
(2)當Br>=CE時,求證:nDEFG是矩形.
19.[2024年云南中考真題]如圖,在四邊形ABCD中,點E、F、G、H分別是各邊的中點,
且AB〃CD,AD//BC,四邊形EFGH是矩形.
(1)求證:四邊形ABCD是菱形;
(2)若矩形EFGH的周長為22,四邊形ABCD的面積為10,求A3的長.
20.[2023年云南中考真題]如圖,平行四邊形A3CD中,AE,CT分別是NBA。,4CD的
平分線,且E,R分別在邊3C,AD上,AE=AF.
(1)求證:四邊形AEB是菱形;
(2)若NABC=60。,ZXABE的面積等于46,求平行線A3與DC間的距離.
21.[2023年內(nèi)蒙古呼和浩特中考真題]如圖,四邊形ABCD是平行四邊形,連接AC,BD交
于點。,OE平分NAZ汨交AC于點E,BF平分NCBD交AC于點F,連接5E,DF.
(1)求證:N1=N2;
(2)若四邊形ABCD是菱形且AB=2,/ABC=120。,求四邊形BED尸的面積.
參考答案
1.答案:c
2.答案:B
解析:ABCD是平行四邊形,
AB=CD,AD=BC,AO^OC,BO=OD,
故選B.
3.答案:B
解析:???正多邊形的一個外角為60。,
正多邊形的邊數(shù)為360。+60。=6,
??.這個正多邊形的內(nèi)角和為180。義(6-2)=720。,
故選:B.
4.答案:D
解析:逐項分析如下.故選D.
選項分析是否符合題意
可判定上下兩邊平行,左右
A兩邊不平行,故不是平行四否
邊形.
只能判定左右兩邊平行,故
B不
不一定是平行四邊形.
只能判定左右兩邊相等,故
C否
不一定是平行四邊形.
上下兩邊既平行又相等,故
D是
是平行四邊形.
5.答案:C
解析:?.?四邊形ABCD是平行四邊形,
DO=-DB=2.5,OC=~AC=1.5,
22
DE//AC,CE//BD,
:.四邊形OCED是平行四邊形,
DE^OC=1.5,CE=OD=2.5,
...周長為:2x(1.5+2.5)=8,
故選:C.
6.答案:C
解析:?.?點。為對角線AC,3。的交點,二。為3。的中點.
又?.?點E為CD的中點,OE=3,為△BCD的中位線,BC=2OE=6.
?.?四邊形A3CD為菱形,.?.菱形A3CD的周長為6x4=24,故選C.
7.答案:B
解析:正六邊形每個內(nèi)角為:(6-2)x180。50。,
6
而六邊形MBCDEN的內(nèi)角和也為(6-2)x180°=720°,
ZB+ZC+ZD+ZE+ZENM+ZNMB=720°,
ZENM+ZNMB=720°-4x120°=240°,
〃+NETW+o+NA/M5=180°x2=360。,
a+/3=360°-240°=120°,故選:B.
8.答案:B
解析:四邊形ABC。為菱形,E是CD的中點,
???ABUCD,BC=CD=2CE-
^BF=a,則CE=2a,:BC=4a.
如圖,過點C作CM,AB交A3的延長線于點M,則四邊形CE五M為矩形,
:.FM=EC=2a,CM=EF=◎?
在RtzXCBAf中,CB?=BM?CM?,即(4a>=(3a>+(近>,
解得a=l(負值已舍去),.?.JBC=4.
9.答案:A
解析:由題意,連接的0,記BD與MN交于點、0.
線段MV垂直平分3£),
:.BO=DO,BM=DM.
■:四邊形ABCD是矩形,
:.AD//BC.
:.ZMDO=ZNBO.
又ZDOM=ZBON,
:.△DMgABNO(ASA).
:.DM=BN=BM=2.
在RtABAM中,
AB=VBM2-AM2=A/3.
.?.在RtABAZ)中可得,BD=VAB2+AD2=273.
故選:A.
10.答案:D
解析:過點3作BELAZ)于點E,BF上CD于點F,
根據(jù)題意得:ADUBC,AB//CD,BE=BF=3,
四邊形ABCD是平行四邊形,
ZABC=ZA£>C=60°,
ZABE=ZCBF=30°,
AB=2AE,BC=2CF,
':AB-=AE2+BE~,BE=3,
AB=1^3,
同理:BC=26
AB=BC,
二四邊形ABCD是菱形,
AD=2也,
§菱形ABCD=AOx=6A/3.
故選:D.
11.答案:=(答案不唯一)
解析:添加AD=AB(答案不唯一),
,在四邊形ABCD中,AD=BC,AB^CD,
???四邊形ABCD是平行四邊形,
,?AD=AB,
???四邊形ABC。是菱形,
故答案為:AD=AB(答案不唯一).
12.答案:10
解析:?.,四邊形A3CD是菱形,.?.B4=5C.
又?.?NB=60。,.?.△ABC是等邊三角形,.?.AC=AB=10.
13.答案:1
解析:在矩形ABCD中,AD//BC,ZABC=90°,
BC=7AC2-AB2=V52-32=4,
BCFC4
.AE1
--——,
4-4
:.AE=1.
故答案為:1.
14.答案:10
解析:在nABCD中,AB=CD,AB//CD,
:.NCDB=ZABD.
?.?點。為3。的中點,,(由二。。.
又?;ZDOF=ZBOE,/FDO=NEBO,
:.Z\ODF^Z\OBE,DF=BE,:.CF=AE=\Q.
15.答案:2亞
解析:在矩形ABC。中,AB=8,AD=DE=10,
ZABC=ZC=90°,BC=AD=10,AB=CD=S,
CE=NDE?-CD?=6,
BE=BC—CE=4,
AE=VAB2+BE2=4A/5,
?.?點R是AE的中點,
BF=-AE=2y/5.
2
故答案為:275.
16.答案:(1)證明見解析
(2)18
解析:(1)證明:?.?四邊形A3CD是平行四邊形,
ABHCD,:.NBAE=NFDE,NEBA=NEFD.
?.?E是AD的中點,
:.AE=ED,:.Z\BAE=Z\FDE,
:.AB=FD.
又ABIIFD,四邊形A3Z?是平行四邊形.
又NBDF=90。,二四邊形ABDF是矩形.
(2)?.?四邊形是矩形,
ZAFD=90°,AF=BD,AB^DF=3.
?.?四邊形A3CD是平行四邊形,.?.CD=AB=3.
根據(jù)勾股定理,得AF=JAI)?-DE?=J52—32=4,
:.BD=4,
S=S^BCD+S矩形ABDF=—x4x3+4x3=18.
17.答案:(1)證明見解析
(2)證明見解析
解析:(1)連接3D,交AC于點。,
A
?.?四邊形ABC。是平行四邊形,.?.03=如,
?.-BM//DN,
ZMBO=ANDO,
又ZBOM=/DON,:.^BOM^/\DON(ASA),
BM=DN,四邊形BMDN為平行四邊形,
BN//DM,:.ZDMN=ZBNM.
(2)?.?四邊形A3CD是平行四邊形,
BC//AD,ZBCA=ZDAC,
?:ABAC=ZDAC,ZBAC=ZBCA,
AB=BC,二平行四邊形A3CD是菱形,
:.AC±BD,:.MNLBD,
:.平行四邊形3MDN是菱形.
18.答案:(1)見解析
(2)見解析
解析:(1)證明:?.?80,CE是△ABC的中線,
.?.點E和點。分別為AB和AC的中點,
」.DE是△ABC的中位線,
:.DE//-BC(依據(jù):三角形的中位線定理)
=2
同理可得,F(xiàn)G//-BC,
=2
DE//FG,
二四邊形DERG是平行四邊形.
(2)證明:?/DEHBC,
:./\OED^/\OCB,
ODOEED_1
"OB~OC~BC~2'
???點F,G分別是03,0c的中點,
:.OF=FB,OG=GC,
:.OD=OF=FB,OE=OG=GC,
22
:.DF=-BD,EG=-CE,
33
-.BD=CE,
DF=EG,
二平行四邊形ERG。是矩形.
19.答案:(1)見解析
(2)^/^T
解析:(1)連接3。,AC,
AB//CD,ADIIBC,
:.四邊形ABC。是平行四邊形,
?.?四邊形ABCD中,點E、F、G、H分別是各邊的中點,
GF//BD,HG//AC,
■:四邊形EFGH是矩形,
HGLGF,
BD±AC,
二四邊形ABCD是菱形;
(2)?.?四邊形ABCD中,點E、F、G、H分別是各邊的中點,
.-.GF=EH=-BD,HG=EF=~AC,
22
?.?矩形EFGH的周長為22,
BD+AC=22,
?.?四邊形ABCD是菱形,
即晝。+!AC=OA+O3=n,
22
四邊形ABCD的面積為10,
:.-BDAC=\Q,BP2OA-OB=10,
2
-.-(OA+OB^=0^+2OA-OB+OB2=121,
OA2+OB2=121-10=111,
AB=y/o^+OB-=Vm.
20.答案:(1)證明見解析
(2)46
解析:(1)證明:?.?四邊形A3CD是平行四邊形,
AD//BC,/BAD=NBCD,
:.ZBEA=ZDAE.
.AE,Cb分別是NBA。,/BCD的平分線,
ZDAE=-/BAD,ZBCF=-4BCD,
22
ZBCF=ZDAE=ZBEA,
:.AE//FC.
又AF/IEC,
二四邊形AECT是平行四邊形.
又;AE=AF,
二四邊形AECR是菱形.
(2)-,-ADZ/BC,ZABC=60°,
:.ZBAD=12O°,
NEAD=NBAE=-/BAD=60°,
2
.?.△ABE是等邊三角形,
/.BE=AB.
如圖,過點A作AG_LBE于點G,
則AG=ABsin60°^—AB,
2
5AM=-5E-AG=-ABx—AB=4A/3,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 衛(wèi)生招聘知識試題及答案
- 通信原理高校試題及答案
- 透析相關(guān)試題及答案
- 2025年水利基礎(chǔ)設(shè)施勞務(wù)分包協(xié)議
- 2025年技術(shù)監(jiān)管合作協(xié)議
- 人力資源管理中的風險防控機制
- 如何應對股東糾紛與治理問題
- 2025年交易市場協(xié)議規(guī)范
- 企業(yè)法律權(quán)益保護風險管理評估
- 2025年城鄉(xiāng)基礎(chǔ)設(shè)施改善策劃合作協(xié)議
- 山東財經(jīng)面試試題及答案
- 2025年租房合同房東模板
- 2022年高考物理試卷(廣東)含答案解析
- 【MOOC】政府審計學-南京審計大學 中國大學慕課MOOC答案
- 英國簽證房產(chǎn)證翻譯模板(匯編)
- 挖掘機裝載機定期檢驗報告
- 新版現(xiàn)代西班牙語第二冊課后答案
- 園林植物病蟲害防治技術(shù)操作質(zhì)量標準
- 水泥土防滲墻施工方案
- 財務(wù)報銷制度與報銷流程圖
- 國外教學設(shè)計研究現(xiàn)狀與發(fā)展趨勢
評論
0/150
提交評論